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Formalism of probability theory

m Probability space: (Q, X(Q), &)
— \ \ Probability

All possible Sigma algebra
outcomes (all measurable sets)

m Random variableasamap X : Q — X

wH— Xw)eXx
ol \ What the observer sees:

“Conceptual” indicator of eIV
outcome of ONE random experiment the realization

= X = State space (assumed to be a vector space such as R)

= Borel(X): Borel sigma-algebra of X
all open sets of X"

= Induced probability measure

Px(E)=P{weQ: X(w) € E}foral E € Borel(X)

measure & : 3(Q) —

[0, 1]

“Smallest sigma-algebra that contains

Review: real-valued random variable

X =R wr X(w)eR

= Probability density function: py : R — R*

_1l.2
px(x) = 12 e 2?

\Ha/}spx()d

= Probability measure: Borel(R) — [0, 1]
Py (E) = Prob(X(w) € E) = / px(2)dz
E

\) Flox}e) = e 2

= Expectation operator (f measurable function R — R)

E{f(X)} = / F(@)px (2)de = / f(2) P (da)
Mean: ux = E{X}

Variance: 0% = E{(X — ux)?}

= Characteristic function: R — C
Px(€) = EfeX€) = / px (@)
R




Review: random vector in RYY

X =RV X =(X1,...,Xn)

w— Xw)eR

= Probability density function px : RV — Rt

= Probability measure: Borel(RY) — [0, 1]

Px(E) = Prob(X (w) € E) = /E px(@)dz

= Expectation operator (f measurable function RY — R)

B0} = [ f@px(@de = [ j@)ox(d)

RN
M (X} RN Lebesgue—Stieltjes integral
ean vector: px =R e

Covariance matrix: Cx = E{(X — pux)(X —pux)T} e RN*N

= Characteristic function: RY — C

égx(ﬁ) = E{¢X €N :/ px (z)e! &) de :/ &) Py (da)
RN RN

4.1 Generalized stochastic process in S'(R%)

X = S’(Rd) L] PrO@T&\/‘\f\u}ﬁon pa: X S R 272
._ﬁ/ \

wr g=G(w) € S'(RY)

infinite
dimensional
= Probability measure: Borel(S'(R?)) — [0, 1]
Pc(E) = Prob(G(w) € E)
= Abstract expectation operator (f measurable function S'(R%) — S'(R%))
E{f(G)} = f(9)ZPc(dg)
S’ (R4)
/ Mean g-function: ug = E{G} € S'(RY)

Abstract Lebesgue integral _
Covariance operator R¢ : S(RY) — S'(R?)

Re =E{(G — pg) ® (G — pe)}

= Characteristic functional: S(R%) — C

Pa(p) = E{e/(G9)} = &(9:9) P (dg)
S’ (R4)




GSP as a random linear functional on S(R%)

Any realization g = G(w) specifies a continuous linear map S(R4) — R

p = (G(w), p) = Xp(w)

Definition
A generalized stochastic process G in S’(R?) is a random linear functional
o+ (G, p) on S(R?) with the following properties:

e Generation mechanism: for any ¢ € S(R?), the quantity X,, = (G, ¢) is
an ordinary scalar random variable whose pdf px , is parametrized by .

e Linearity: (G,a1p1 + azp2) = ai1(G, 1) + az(G,p2) in law for any
01,02 € S(R?) and a1, as € R.

e Continuity: If the sequence (¢,,) is converging in S(R?) then lim,, o (G, ¢r) =
(G, limy, o0 @y ) in law.

Examples of GSP

m (Generalized) deterministic process
w > Goonst (W) =po € S'(RY)

@ = GConst<(P) = <p07 90>

m Linear process = finite-dimensional entity
w i Gy (W) = 01 An(w)pn
N N
p = GN()(QO) = <Zni1 AnPn, @) = zni1 Ap(Pns @)

where A,, ~ N(0,02): i.i.d. Gaussian, (p1,...,pn): fixed elements of S’(R%).

m Gaussian white noise

P WGauss(@) = <WGau587 90> ~ N(Ou H@H2L2(Rd))

= Wgauss(w): infinite-dimensional entity ~ (random counterpart of Dirac ¢)




Properties of GSP: Definitions

m Independence

The GSP G, and G5 in S’(R%) are mutually independent
& X; = (G1,p) and Xy = (G2, ) are mutually independent for any ¢ € S(R9)

m Statistical properties
The generalized stochastic process G in S’(R?) is said to be:
= Gaussian if X = (G, ¢) is Gaussian distributed for any ¢ € S(R9)

Special case of standardized white Gaussian noise:

X = N(0,0%) with 0% = [|¢||7, (g forany ¢ € S(R?) (resp., any ¢ € Lo(R%))

m Stationary Shift-invariance: G = G(- — x¢) (in law)

if Xzy = (G, (- + o)) identically distributed for any o € R?

m Self-similar with Hurst index H Scale invariance: G = a G(-/a) (in law)

if X, = a’ (G, |a|¢p(a-)) identically distributed for any a € RT

Linear transformation of GSP

Adjoint pair of continuous linear operators: T : S’(R?) — S'(RY), T*:S(RY) — S(RY)

m Definition of linear transformation

(T{G}, ) = (G, T*{p})  forany ¢y € S(R?)

m Primary transformations of g = G(w) € S'(R?)
= Translation by o € R¢: (g(- — ), ) = (g, (- + x0))
= Dilation (or scaling) by a € R*:  (g(-/a), ¢) = (g, |a|%p(a-))
= Rotation of coordinate system « — Rx withR™! = R”:
(9(R), ) = (g, p(R™1))
= Partial derivative operator 0™ of multi-order n = (nq,...,ngq):
(07g.9) £ (g, (~D)"omg)

n
where [n| = nq + -+ +ng and 9%p(x) = M
d
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4.2. Mean and covariance forms

G(p) = (G, ) is an ordinary random variable for any ¢ € S(R?)
with mean B((G.¢)} = B{G(p)} = [ apa(a)do

m Mean as a linear functional

E{{(G,¢)} : S(RY) — R (linear and continuous map)

& there exists a unique 11 € S'(RY) (the mean of the GSP G) such that

¢ = E{G,¢)} = (E{G}, ¢) = (1as #)

m Examples

Constant process: ¢ — Gconst () = (po, ©)
= ILLGCOHSt = pO

Gaussian white noise: ¢ — Waauss(#) = N(0, [l¢]lZ,)
= I’LGGauss = 0 : SD = </"LGGauss7 g0> = 0
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Covariance form / operator

Extraction of second-order statistics with X; = (G, ¢1) and X5 = (G, v2)
Calpr, ¢2) = B{UG — g, 1) (G — na, g2)} = Cov(X1Xy)

Theorem (Properties of covariance form)

R has the following properties:

e Symmetry: C(p1,p2) = Ca(p2, 01).

e Bilinearity: C : (¢1,p2) — Ca(v1, p2) is linear in each of its arguments.

Continuity: C continuously maps S(R?) x S(RY) — R.

Positive-definiteness: C (1, 91) > 0.

Link with covariance operator: Unique R¢ : S(RY) — S’(R9) s.t.

Ca(p1,p2) = (Ra{pr}, p2) = (Rai{pa}, 1)

Kernel representation: Unique symmetric kernel r¢ € S’(R? x R?) sit.

Colren) = oo @) = [ [ rate. v @)a(y)dady.

Let G be a GSP in S'(R%) with mean E{G} = pu¢ and the second-order property
E{(G, p)?} < oo for all ¢ € S(R?). Then, its covariance form Cg : S(R?) x S(R?) —

12




Positive-definite covariance form / kernel / operator
Calp, ) = (Ra{e), ) 20

m Covariance function:  rg(z,y) = Cq(0(- — ), 6(- — y))

m Covariance operator:  Rg{p}(x) = (rg(x,-),¢) = /Rd ra(z,y)e(y)dy

m Effect of a linear transformation T : §’'(R?) — S'(R?)
E{{T{G}, ¢)} = (ue, T{¢}) = (T{uc},v) & priey = T{ua}

Cra(p1,92) = Ca(T*p1, T*p2) = (o1, TRcT*p2) & Rrigy = TRgT*

m Special case of a stationary processes

ra(x,y) =rq(0,(y —x)) = ac(y — x)

ac(T) = E{G(x)G(x + 1)} (classical autocorrelation function)

13

Mean and Covariance of a random vector in RY
X = (X17"'7XN)

m Meanvector: ux = E{X} €RY

= E{Y} = (ux,u)

m Covariance matrix: Cx = E{(X — px)(X —px)’} € RVN

= COV{XmaXn} = [CX]m,n

m Covariance operator RN — RY: u+ v =Cxu

Positive definiteness: (u,Cxu) = Var{Y'} >0

m Effect of a linear transformation T : RY — RM
Y =TX ¢ RM
py =E{Y}=Tux € RY
Cy = exp{(Y — puy ) (Y — py)T} = TCy TT € RMXN

14




Mean-square continuity and RKHS

Classical stochastic process on R? = indexed collection of random variables {G(z) : € R4}
GSP with extended space of test functions that includes §(- — x) for any xq € R?
G(x) £ (G,0(- — x))

E{G(®)} = pa(x) and rg(z,y) =E{(G(x) — pa(®)) (G(y) — pe(y))}

Definition
A real-valued stochastic process {G(z) : € R?} is said to be mean-square continuous
atxg € R4 if E{[G(iﬂo)?} < oo and

limgay B{[G(2) — G(z0)]”

}=0.

Theorem (Mean-square continuity)

A second-order stochastic process G on R? is mean-square continuous over R? if and
only if its mean and covariance functions, i and rg, are continuous over R? and
R x R4, respectively. This also implies that r¢ is a valid reproducing kernel.

lim E{ [G(a:) — G(mg)]2} = lim (rg(x,x) + rg(xo, o) — 2ra(x, o))

r—x0 T—xo
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4.3 Characteristic functional

Definition
The characteristic functional &2 : S(Rd) — C of the generalized stochastic
process G in S’(R?) is given by

Palp) 2 E{JGP)) = S/(RY) e'99 P(dg)

where the right-hand side is an abstract Lebesgue integral over the space S’ (R?).

m Examples

= e@TCJConst (SO) = ]E{ej<GConst,<p>} = ej <P0,Lp>

= Finite-dimensional Gaussian process G, = zfj;l Appn with 4,, ~ N(0,02)
No
= Y = (Gny,p) ~ N(0,0%) with o3 =Y~ 07| (pn, )

n=1

No
= py(€) =E{e®}=exp(~3€%03) = Pay,(p) =exp <—§ > 2 l(pn, @>I2>
n=1

16




Continuity and positive definiteness

Definition

A functional F' : X — C is said to be continuous (with respect to the topology of
the function space X)) if, for any convergent sequence (i,,) in X’ with limit ¢ € X, the
sequence F'(¢,,) converges to F(y); that is, lim,, F(¢,,) = F(lim, ¢,).

Definition
A complex-valued functional F' : X — C defined over the function space X is said to be
positive-definite if

N N
Z szF(me - @n)zn >0 (1)
m=1n=1
for every possible choice of ¢1,...,on € X, 21,...,2y € C,and N € NT. Like-

wise, it is said to be conditionally positive-definite if (1) holds subject to the constraint
Zf:;l zn = 0.
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Positive-definite functionals: fundamental examples

H: Hilbert space with inner product (-, -) .
1
B F(p) = e zleli g positive-definite over H

m G(p) =log F(p) = —1|l¢l13, is conditionally positive-definite over

N N
_% Z Zz'mzn |So'm SO’MH'QH =

m=1n=1

N N N N N
= %Z Z ZT?LH‘PW”% - % Z Zm Zan‘Pn“% + Z Z szn«Pnu Sﬁn>H
n=1

m=1 m=1 n=1 m=1m=1
N——
=0 =0

N N
Z Z ZmZn 90711,7%071, H = ” Zzn@nHrH > 0

m=1n=1 n=1

m Schoenberg’s correspondence theorem

G () conditionally positive-definite over X

& F(p) = e™9(¥) positive-definite over & for any 7 € R+

18




Characteristic functional: key properties

Theorem
The characteristic functional 2 : S(RY) — C of a generalized stochastic process G in S’'(R?) enjoys

the fol

1.

lowing properties:

P is continuous, bounded (i.e. Lﬁg(gpﬂ < 1), Hermitian-symmetric (i.e., ﬁg(ﬂp) = tﬁgﬁp))
and normalized such that Z¢(0) = 1.

F?G is positive-definite.

. Connection with joint pdf: Let o1, ...,on € S(R?) be any fixed collection of test functions. Then,

the joint pdf of the random vector G = ((G,¢1),...,(G,pn)) is given by the following finite-
dimensional inverse Fourier transform

—~ = dg
= G j(€.x)
pc(z) . Pa(bror +---+énvon)e @mN

with Fourier-domain variable & = (&1, ,&n)-

. Linear transformation: Let T be a continuous linear operator S’'(R%) — S’(R%) and pp € S'(R?)

some constant generalized function. Then, the characteristic functional of Q@ = T{G} + o is
20(9) = PriGrin(9) = P (T )0

where T* : S(RY) — S(R?) is the (continuous) adjoint of T.

. Sum of independent processes: Let G1 and G2 be two independent generalized stochastic pro-

cesses with characteristic functionals 9@1 and ch, respectively. Then, the characteristic func-
tional of G = G1 + Gz is
‘@G1+G2(§0) = ‘@GH(QO)‘QQGQ(()O)'

19

Characteristic function: key properties

Random vector in RY: X = (X1,..., Xy) with pdf px : RV — R*
Theorem
The characteristic function px (§) = E{e/¢X)} = [[ px (x)e)€-®) da enjoys the following properties:

1.

such that px (0) = 1.

. px is positive-definite.

dg
(2m)N

. Invertibility: px(m):}'*_l{ﬁx}(m):/ px(E)eilE)
JRN

. Linear transformation: Let H € R™* pe an arbitrary transformation matrix and b € R™ some

constant offset vector. Then, the characteristic function of Y = HX + b € RM is

Py (€) = Prx+b(€) = px (HTE)P' €

with Fourier-domain variable £ € RM and HT¢ € RY.

. Sum of independent random variables: Let X; € RN and X, € RY be two independent random

vectors with cfs px, and px,, respectively. Then, the characteristic function of Y = X; + X is

ﬁX1+X2(E) = ﬁX} (£)ﬁx2 (s)

. Preservation of separability (or joint cf of a collection of independent random variables). Let X =

(X1, X2) with px (x) = p(x,,x,)(®1, ®2) = px, (T1)px, (®2). Then,

ﬁ(Xth)(g) = ﬁxl (El)ﬁxz (52) with § = (61762)'

px : RY — Cis continuous, bounded (i.e., [px (£)| < 1), Hermitian-symmetric, and normalized

20




Functional characterization theorems

Theorem (Minlos-Bochner)

A functional ﬁg : S(RY) — C is the characteristic functional of a generalized stochastic G in
S'(R?) if and only if it is positive-definite, continuous and normalized with ﬁg(o) = 1. This is
equivalent to the existence of a unique probability measure Z2; on S'(R?), such that

Pa(p) = / e 399 P(dg) = E{e G}
5/ (R%)

Theorem (Extension of the domain)

Let 3/50 be a valid characteristic functional whose domain of continuity is extendable to some topo-
logical vector space X with the property that S(R?) C X C S&'(R?). Then, the extended func-
tional @G : X — C is continuous, positive-definite and normalized, which implies that the
random variable G(¢) = (G, ¢) is well-defined for any ¢ € X.

= Transfer of positive-definiteness: denseness of S(R?) in X’ + continuity of P

m Let X = (G, ¢g) with ¢y € X fixed. Then, the map R — C
& Pi(Edo) = E{e(C 9} = E{e¥} = px ()

is continuous, positive-definite and normalized. Hence, X is a bona-fide random variable (by Bochner).

21

Distributional extension of Bochner’s theorem

The (complex-valued) generalized function g : S(R?) — C is said to be positive-definite if
/Rd /Rd o(@)g(x — y)p(y)dedy = (g% ¢,) = (g,(@" *¢)) >0

where ¢ denotes the reversed version ; i.e., ¢V (z) = o(—a) for any = € R<.

Theorem (Bochner-Schwartz)

A generalized function § € S’'(R?) is positive-definite if and only if it is the generalized
Fourier transform of a positive distribution g > 0; that is,

o) = (9.9) = [ ol@lg(@a
R
where @(w) = [p. o(x)e 3« ®) dx is the Fourier transform of the test function ¢ € S(R?).
Moreover, if ¢ is continuous at the origin with g(0) = 1, then it is the (ordinary) Fourier
transform of a Borel measure g > 0 with [, g(x)dx = 1.

Key idea (Generalized Parseval’s relation)

<gv(90v*<p)>:<g>¢>:<g>é>:<gv|¢‘2> >0 = ¢g>0

22




4.4 Characterization of Gaussian processes

Theorem (Generalized Gaussian processes)

A generalized stochastic process G in §'(R?) is Gaussian if and only if Z¢(¢) = E{c}(@¥)} =
exp (—3Ca (e, ) +iluc, ¢)) where Cg : S(R?) xS(R?) — Ris a continuous positive-
definite bilinear form and uc € S'(R?). This generalized Gaussian process is uniquely
characterized by its mean

E{G} = pc
and its covariance operator R : S(RY) — S'(R9) defined as

p = <RG{§0}’ ) = CG(QD’ ')a

which is indicated as G ~ N(ug,Rg) in S’(RY), whereas the covariance form of the
process is C'g, as the notation suggests.

m Special case: Gaussian white noise
= CWGauss(gpla 802) = <S017 ¢2>L2 Or! equ|Va|ent|y, RWGauss = Identlty

L] ﬁWGauss(gD) = €exp <_%H(p”%2(ﬂgd)) g WGauss ~ N(OvIdentltY) in S/(Rd)

Note: Domain extendable from S(R¢) to Ly (R¢)

23

Multivariate Gaussian distribution

Definition
The characteristic function of a multivariate Gaussian random vector of dimension N with mean
p € RN and symmetric positive-definite covariance matrix C € RV*¥ is

PGauss(§|1, C) = exp <_%€TC€ +jNT£) .

Bilinear form RY x RN — R:  (£&,,&,) — (&, CE,)
Linear form RV — R: &— (1, €)
m Notation

X ~ N(p,C): The random vector X = (X7,..., Xy) is multivariate Gaussian
with mean p and covariance C
1

1 To-l(%v _
PGauss(X |1, C) = WGXP (—2(X —p) C(X N))

Proposition (Invariance by affine transformation)
Consider some fixed matrix H € RY2*MN1 an offset vector b € RN and some N, -dimensional
Gaussian random vector X1 ~ N (1, C1). Then, X5 = HX; + b ~ N (5, Co) with

o =Hp, +b and C,=HCHT.

24




Proof of Gaussian characterization theorem

= Existence and unicity of generalized stochastic process G in &’ (R%)

¢ — exp (-2 (Ra{e}, ) + i{ka, ¢)) is positive-definite, continuous, and normalized

(due to the positive-definiteness of R and Schoenberg’s correspondence)

= GisaGSPinS'(R?) (by Bochner-Minlos’ theorem)

m Determination of characteristic function of X = (G, ¢):
E{el¥} = E{e/( 97} = Pa(wy)
_Ll2.2
= exp (— 5w Calp, ) +jwlug, @) = e 27 eln

= Gaussian cf with mean u = (uq, ) and variance 02 = Cg(p, ¢) = Var{ X }

m |dentification of covariance form (using bilinearity) with X; = (G, ¢1) and X5 = (G, ¢2)
Var(X1+X2) Var(X1—X2)

(CG(<P1 + 02,01 + 02) + Calp1 — @2, 01 — @2)) = Ca(p1,92)

COV(Xl, XQ) =

> —

= Continuity of Cg : S(R?) x S(RY) — R is a necessary condition (see covariance theorem)

25

Invariance to coordinate transformations

Continuous linear functional on S(R?): g € S’(R?)

Continuous linear operator T : S(R?) — S'(R%)

m Definition

g and T respectively are said to be

= shift-invariant if, for any ¢ € S(RY) and = € RY,

Il

(9(- = 20), ) = (g, 9(- + o)) = (g, 9)
T{o(- — @)} = T{p}(- — xo)
= scale-invariant of order  if, for any a € R,
(9(a),9) £ (g, a]~%o(-/a)) = a¥(g,)
T{e(a-)} = a"T{p}(a-)
= rotation-invariant if, for any rotation matrix R : R — R¢,

(g(R), ¢) = (g, o(R™1)) = (g, )

T{pR-)} = T{r}(R).

26




Categorization of Gaussian processes

Proposition (Types of Gaussian processes)
Let G ~ N(ug, Rg) be a generalized Gaussian stochastic process in S’ (R%) with mean p¢ €
S’(R%) and covariance operator R¢ : S(R?) — S’(R?). Then, depending on the properties of
ua and Rg, the process G is:
= stationary iff. both ug and R are shift-invariant; that is, when ug = Const and R¢ is a
(positive-definite) convolution operator.

= self-similar with Hurst exponent H iff. s and R are scale-invariant of order H and 2H;
= isotropic iff. both 1 and R are rotation-invariant;

= mean-square continuous on R iff. there exists some o € R such that ug = E{G} €
Ch.o(RY) and g € Ch o (RY x R?) where r¢ is the kernel of the covariance operator Rg;
i.e, the mean and the covariance functions are both continuous and of slow growth.

m Examples

= Gaussian white noise Waauss ~ N(0, Identity) in S’'(R?): stationary, isotropic, self-similar

= Brownian motion Gwiener ~ N (0, Rp) in &' (R): self-similar, mean-square continuous

Covariance function: rwiener (2, 4) = hp(z,y) = 5 (|z| + |y| — [z — y)

27

Classical Gaussian processes and RKHS

m Preliminary observations

1
= Domain of F(y) = e~ 213 can be extended from S(RY) to H'

= To recover a classical process on R¢, H’ should include 6(- — x) for any o € R?

Corollary (Equivalence between Gaussian processes and RKHS)

A GSP G in S’(RY) is equivalent to a “classical” Gaussian process on R? if and only if
its characteristic functional is of the form

Pa(p) = exp (—3llelZy +iluc, 9)

with
ez :/Rd A(i@(w)TG(w,y)w(y)dwdy: (¢, Re{e})

and ug € H, where 7 : R x R? — R is the reproducing kernel of some RKHS H C
S’(RY). This means that G ~ N (ug, Rg) and that its sample values, {G(x) : € R},
are well-defined Gaussian random variables with mean E{G(x)} = ua(x) and covariance
function

E{(G(z) — pa(x)) (Gy) — na(y))} = ra(x,y) = Ra{6(- — y)} ().

Finally, G is mean-square continuous if and only if r¢ € Ch, o(R? x RY) for some a € R,
which implies that % C C}, o (R?).

28




Gaussian marginals

Proposition

Let G ~ N(ua, Ra) withRe = ¢ — [. 7a (- y)¢(y)dy be a Gaussian process on R? whose covariance
function r¢ : RYxR? — Ris the reproducing kernel of a RKHS H C S’(R9) and such that juc € H. Then,
Y = ((G, 1), .., (G, ¢n)) is a well-defined multivariate Gaussian vector if and only if 1, ..., on € H'.
Specifically, Y ~ N (py-, Cy) with mean vector

Hy = (<NG: ¢l>> ey <N’G>SDN>) S RN
and covariance matrix Cy € RV*¥ such that

[CY]m,n = <RG{SDm}a 9071> = <‘Pm7 ‘Pn)?—l’
~ [ | enl@rce.ven(w)dady.
RN ]RN

29

4.5 Gaussian solutions of SDE

Adjoint pair of continuous linear operators: T : S'(R?) — Ly(R%) and T* : S(RY) — Lo(RY)

m Linear transformation of a white noise

wi— w = Waauss(w) = s = S(w) = T{w} + ps

w S
— T S ~ N(ug, TT*)
white noise

Generation of Gaussian process with factorizable covariance operator: Rg = T'T*

m Innovation model = stochastic differential equation
Ls=w = s=L"1w

Coercivity hypothesis: Continuity of L~1* = T* : S(RY) — Lo(R%)

30




Operators with non-trivial null space
L is spline-admissible with finite-dimensional null space N}, = span{pn}ﬁfgl

Biorthogonal boundary functionals ¢ : H; (RY) — RN st o(p,) = e,

m Solution of linear stochastic differential equation

Imposing Ny boundary conditions
Ls=w st ¢(s)=0
Generalization:
Ls=w st ¢(s)=(a,...,an,)
an: realizations of independent Gaussian variables A,, with zero mean and variance a,%

No
= s:L(_i)lw—FZanpn

n=1

31

Explicit solutions of linear SDE

w: realization of white Gaussian noise

a,: realizations of independent Gaussian random variables A4,, ~ N (0, 02)
Ny

Ls=w st ¢(s)=(a,...,an,) = s:L;Iw—i—Zanpn

n=1

m Characterization of underlying stochastic process

Nop

S = L(ZlWGauss + Z Anpn ~ N(O, RS)

n=1

Nop
Characteristic form: Z5(p) = exp <—% L0l — 5> onl{pn, @)]2)
n=1

Ny
Covariance function: rg(xz,y) = E{S(x)S(y)} = ae(x,y) + Z 2 pn()pn(y)
No n=1
Covariance operator: Rg = Ay + Z 02P,  with P, ulu, @)
n=1

= same form as in Section 2 on RKHS !l

32




4.6 MMSE solution of linear inverse problems

Linear measurement model: s+ y = v(s) + n € RY

m Hypotheses

the unknown signal s = S(w) € S’(R?) is a realization of a stochastic process S;
rs : R? x R? — R is the reproducing kernel of a RKHS H C C}, o (R9);

S is a Gaussian process on R? with mean E{S(x)} = ps(x) € H and covariance function
E{(S(z) — us(®))(S(y) — ns(y)) } = rs(z,y);

v:s— v(s) = ((v,s),...,{(vu,s)) with v,, € H' is a linear operator that extracts M
measurements from the signal s;

n € RM is an independent additive white Gaussian noise (AWGN) component whose entries
are i.i.d. with zero-mean and variance o3.
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MMSE estimator at location x

Generalized Gauss-Markov theorem
The minimum mean-square error (MMSE) estimation of s(x) given the noisy linear ob-
servationy = v(s) + nof sis

while the corresponding estimation error is

Here,
G € RM*M g the corresponding Gram/covariance matrix.

sumse (]y) = E{s(@)ly} = us(@) +v* (@) (G + o5Tar) " (y — v(us)),

E {(SMMSE(iL"y) = S(w))z} =rs(z,x) — v (x) (G + olly) v (z).

v* = (vf,...,v}) is the Riesz conjugate of the measurement operator v/, while

@) = [ | rst@ ()i

Gl = [, [ m@)rste. v, (w)dady
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Proof of generalized Gauss-Markov theorem

Linear measurement model: s+ y = v(s) + n € RY

» MMSE solution: syvse(zly) = E{s(z)|ly} = determination of p(s(z)|y)

m Distribution of v(.S) (see Gaussian marginals theorem)

= v(S) ~N((us),G) with G e RM*xM

where [G / / U ()18 (x, y)vn(y)dedy = y=v(s)+n ~ Nw(us), G+ ogly)
Re JRE

= Joint pdf of Z = (s(x),y) ~ N(mgz,Cz) withmz = (us(x),v(us)),

vi(e)

_ ( re(z,x) v*(x)”

Cz = where v*(x) =
z () Cy ) (z)

Vi (@)

with v, (z) = E{S(x)Y,,} = / rs(z, y)vm(y)dy

m Bayes rule + algebra = p(s(x)|y) = pz(z)/py (y) univariate Gaussian
with mean  E{s(z)ly} = ps(@) + v ()7 (G + o)~ (y — w(jus))

andvariance 02, =rs(z,z) —v*(2)" (G + ogI) " v (2)
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Equivalence with variational solution

m Case of zero-mean signal

E{s(@)ly} = v*(2)" (G + ofIn) 'y

& smuse(zly) = Z AV, ()

with a= (a1,...,an) = (G +03ly) "ty

m Formal equivalence with smoothing spline problem
= H: RKHS induced by covariance function rg : R x R — R
= Rg: covariance operator is the Riesz map H' — H

= \ = o3 optimal choice of regularization parameter

M
smmsk(y) = arg?éiﬁ (Z ‘ym - <Vm7f>|2 + /\||f||31>
m=1

Exact discretization: v}, = Rs{v,}  and (Glmn = (Um, V) = (V) V)

m»Tn

)
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