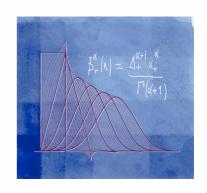


Sparse stochastic processes

Stochastic processes and splines

Prof. Michael Unser, LIB

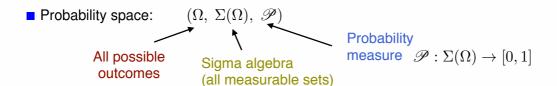


March 2017 EDEE Course

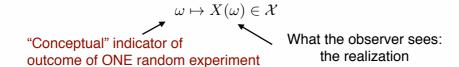
CONTENT

- 1. Preliminaries
- 2. Reproducing kernel Hilbert spaces
- 3. Variational splines and representer theorems
- 4. Gaussian processes
 - Generalized stochastic processes (GSP)
 - Mean and covariance forms
 - The characteristic functional
 - Characterization of Gaussian processes
 - MMSE solution of inverse problems

Formalism of probability theory



lacksquare Random variable as a map $X:\Omega o\mathcal{X}$



- \blacksquare \mathcal{X} = State space (assumed to be a vector space such as \mathbb{R})
- $Borel(\mathcal{X})$: Borel sigma-algebra of \mathcal{X}

"Smallest sigma-algebra that contains all open sets of \mathcal{X} "

Induced probability measure

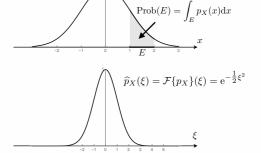
$$\mathscr{P}_X(E) = \mathscr{P}\{\omega \in \Omega : X(\omega) \in E\} \text{ for all } E \in Borel(\mathcal{X})$$

3

Review: real-valued random variable

$$\mathcal{X} = \mathbb{R}$$
 $\omega \mapsto X(\omega) \in \mathbb{R}$

- lacksquare Probability density function: $p_X:\mathbb{R} o \mathbb{R}^+$
- Probability measure: $Borel(\mathbb{R}) \to [0,1]$ $\mathscr{P}_X(E) = \operatorname{Prob}(X(\omega) \in E) = \int_E p_X(x) \mathrm{d}x$



 $p_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$

Expectation operator (f measurable function $\mathbb{R} \to \mathbb{R}$)

$$\mathbb{E}\{f(X)\} = \int_{\mathbb{R}} f(x)p_X(x)dx = \int_{\mathbb{R}} f(x)\mathscr{P}_X(dx)$$

Mean: $\mu_X = \mathbb{E}\{X\}$

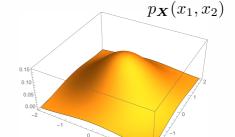
Variance: $\sigma_X^2 = \mathbb{E}\{(X - \mu_X)^2\}$

 \blacksquare Characteristic function: $\mathbb{R} \to \mathbb{C}$

$$\widehat{\mathscr{P}}_X(\xi) = \mathbb{E}\{e^{jX\xi}\} = \int_{\mathbb{R}} p_X(x)e^{jx\xi}dx$$

Review: random vector in \mathbb{R}^N

$$\mathcal{X} = \mathbb{R}^N$$
 $\mathbf{X} = (X_1, \dots, X_N)$ $\omega \mapsto \mathbf{X}(\omega) \in \mathbb{R}$



- ${\color{red} \blacksquare}$ Probability density function $\,p_{\boldsymbol{X}}:\mathbb{R}^N\to\mathbb{R}^+$
- ${\color{red} \blacksquare}$ Probability measure: $Borel(\mathbb{R}^N) \rightarrow [0,1]$

$$\mathscr{P}_{\boldsymbol{X}}(E) = \operatorname{Prob}(\boldsymbol{X}(\omega) \in E) = \int_{E} p_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}$$

lacksquare Expectation operator (f measurable function $\mathbb{R}^N o \mathbb{R}^M$)

$$\mathbb{E}\{f(\boldsymbol{X})\} = \int_{\mathbb{R}^N} f(\boldsymbol{x}) p_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \qquad = \int_{\mathbb{R}^N} f(\boldsymbol{x}) \mathscr{P}_{\boldsymbol{X}}(\mathrm{d}\boldsymbol{x})$$

Mean vector: $oldsymbol{\mu}_{oldsymbol{X}} = \mathbb{E}\{oldsymbol{X}\} \quad \in \mathbb{R}^N$

Lebesgue-Stieltjes integral

Covariance matrix: $\mathbf{C}_{m{X}} = \mathbb{E}\{(m{X} - m{\mu}_{m{X}})(m{X} - m{\mu}_{m{X}})^T\} \in \mathbb{R}^{N imes N}$

lacksquare Characteristic function: $\mathbb{R}^N o \mathbb{C}$

$$\widehat{\mathscr{P}}_{\boldsymbol{X}}(\boldsymbol{\xi}) = \mathbb{E}\{\mathrm{e}^{\mathrm{j}\langle\boldsymbol{X},\boldsymbol{\xi}\rangle}\} = \int_{\mathbb{R}^N} p_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{e}^{\mathrm{j}\langle\boldsymbol{\xi},\boldsymbol{x}\rangle} \mathrm{d}\boldsymbol{x} \qquad = \int_{\mathbb{R}^N} \mathrm{e}^{\mathrm{j}\langle\boldsymbol{\xi},\boldsymbol{x}\rangle} \mathscr{P}_{\boldsymbol{X}}(\mathrm{d}\boldsymbol{x})$$

5

4.1 Generalized stochastic process in $\mathcal{S}'(\mathbb{R}^d)$

$$\mathcal{X} = \mathcal{S}'(\mathbb{R}^d)$$

$$\omega \mapsto g = G(\omega) \in \mathcal{S}'(\mathbb{R}^d)$$

dimensional

lacksquare Probability **measure**: $Borelig(\mathcal{S}'(\mathbb{R}^d)ig) o [0,1]$

Abstract Lebesgue integral

$$\mathscr{P}_G(E) = \operatorname{Prob}(G(\omega) \in E)$$

■ Abstract expectation operator (f measurable function $\mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$)

$$\mathbb{E}\{f(G)\} = \int_{\mathcal{S}'(\mathbb{R}^d)} f(g) \mathscr{P}_G(\mathrm{d}g)$$

Mean g-function: $\mu_G = \mathbb{E}\{G\} \in \mathcal{S}'(\mathbb{R}^d)$

Covariance operator $\mathrm{R}_G:\mathcal{S}(\mathbb{R}^d) o\mathcal{S}'(\mathbb{R}^d)$

$$R_G = \mathbb{E}\{(G - \mu_G) \otimes (G - \mu_G)\}$$

lacksquare Characteristic **functional**: $\mathcal{S}(\mathbb{R}^d) o \mathbb{C}$

$$\widehat{\mathscr{P}}_G(\varphi) = \mathbb{E}\{e^{j\langle G, \varphi \rangle}\} = \int_{\mathcal{S}'(\mathbb{R}^d)} e^{j\langle g, \varphi \rangle} \mathscr{P}_G(dg)$$

GSP as a random linear functional on $\mathcal{S}(\mathbb{R}^d)$

Any realization $g=G(\omega)$ specifies a continuous linear map $\mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$

$$\varphi \mapsto \langle G(\omega), \varphi \rangle = X_{\varphi}(\omega)$$

Definition

A generalized stochastic process G in $\mathcal{S}'(\mathbb{R}^d)$ is a **random linear functional** $\varphi \mapsto \langle G, \varphi \rangle$ on $\mathcal{S}(\mathbb{R}^d)$ with the following properties:

- Generation mechanism: for any $\varphi \in \mathcal{S}(\mathbb{R}^d)$, the quantity $X_\varphi = \langle G, \varphi \rangle$ is an ordinary scalar random variable whose pdf p_{X_φ} is parametrized by φ .
- Linearity: $\langle G, a_1 \varphi_1 + a_2 \varphi_2 \rangle = a_1 \langle G, \varphi_1 \rangle + a_2 \langle G, \varphi_2 \rangle$ in law for any $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$ and $a_1, a_2 \in \mathbb{R}$.
- Continuity: If the sequence (φ_n) is converging in $\mathcal{S}(\mathbb{R}^d)$ then $\lim_{n\to\infty}\langle G, \varphi_n\rangle = \langle G, \lim_{n\to\infty}\varphi_n\rangle$ in law.

7

Examples of GSP

(Generalized) deterministic process

$$\omega \mapsto G_{\text{Const}}(\omega) = p_0 \in \mathcal{S}'(\mathbb{R}^d)$$

$$\varphi \mapsto G_{\text{Const}}(\varphi) = \langle p_0, \varphi \rangle$$

Linear process

⇒ finite-dimensional entity

$$\omega \mapsto G_{N_0}(\omega) = \sum_{n=1}^{N_0} A_n(\omega) p_n$$

$$\varphi \mapsto G_{N_0}(\varphi) = \langle \sum_{n=1}^{N_0} A_n p_n, \varphi \rangle = \sum_{n=1}^{N_0} A_n \langle p_n, \varphi \rangle$$

where $A_n \sim \mathcal{N}(0, \sigma^2)$: i.i.d. Gaussian, (p_1, \dots, p_N) : fixed elements of $\mathcal{S}'(\mathbb{R}^d)$.

Gaussian white noise

$$\varphi \mapsto W_{\text{Gauss}}(\varphi) = \langle W_{\text{Gauss}}, \varphi \rangle \sim \mathcal{N}(0, \|\varphi\|_{L_2(\mathbb{R}^d)}^2)$$

 $\Rightarrow W_{\text{Gauss}}(\omega)$: infinite-dimensional entity (random counterpart of Dirac δ)

Properties of GSP: Definitions

Independence

The GSP G_1 and G_2 in $\mathcal{S}'(\mathbb{R}^d)$ are mutually independent

 $\Leftrightarrow X_1 = \langle G_1, \varphi \rangle$ and $X_2 = \langle G_2, \varphi \rangle$ are mutually independent for any $\varphi \in \mathcal{S}(\mathbb{R}^d)$

Statistical properties

The generalized stochastic process G in $\mathcal{S}'(\mathbb{R}^d)$ is said to be:

■ Gaussian if $X = \langle G, \varphi \rangle$ is Gaussian distributed for any $\varphi \in \mathcal{S}(\mathbb{R}^d)$

Special case of standardized white Gaussian noise:

$$X=\mathcal{N}(0,\sigma_X^2)$$
 with $\sigma_X^2=\|arphi\|_{L_2(\mathbb{R}^d)}^2$ for any $arphi\in\mathcal{S}(\mathbb{R}^d)$ (resp., any $arphi\in L_2(\mathbb{R}^d)$)

Stationary

Shift-invariance: $G = G(\cdot - x_0)$ (in law)

if $X_{m{x}_0} = \langle G, \varphi(\cdot + m{x}_0) \rangle$ identically distributed for any $m{x}_0 \in \mathbb{R}^d$

 \blacksquare **Self-similar** with Hurst index H

Scale invariance: $G = a^H G(\cdot/a)$ (in law)

if $X_a = a^H \langle G, |a|^d \varphi(a \cdot) \rangle$ identically distributed for any $a \in \mathbb{R}^+$

9

Linear transformation of GSP

Adjoint pair of continuous linear operators:

$$\mathrm{T}:\mathcal{S}'(\mathbb{R}^d) o\mathcal{S}'(\mathbb{R}^d),\ \ \mathrm{T}^*:\mathcal{S}(\mathbb{R}^d) o\mathcal{S}(\mathbb{R}^d)$$

■ Definition of linear transformation

$$\langle \mathrm{T}\{G\}, \varphi \rangle \stackrel{\Delta}{=} \langle G, \mathrm{T}^*\{\varphi\} \rangle$$
 for any $\varphi \in \mathcal{S}(\mathbb{R}^d)$

- Primary transformations of $g = G(\omega) \in \mathcal{S}'(\mathbb{R}^d)$
 - $\qquad \text{Translation by } \boldsymbol{x}_0 \in \mathbb{R}^d \colon \qquad \qquad \langle g(\cdot \boldsymbol{x}_0), \varphi \rangle \stackrel{\vartriangle}{=} \langle g, \varphi(\cdot + \boldsymbol{x}_0) \rangle$
 - $\qquad \text{Dilation (or scaling) by } a \in \mathbb{R}^+ \colon \qquad \langle g(\cdot/a), \varphi \rangle \stackrel{\vartriangle}{=} \langle g, |a|^d \varphi(a \cdot) \rangle$
 - lacksquare Rotation of coordinate system $m{x}\mapsto \mathbf{R}m{x}$ with $\mathbf{R}^{-1}=\mathbf{R}^T$:

$$\langle g(\mathbf{R}\cdot), \varphi \rangle \stackrel{\triangle}{=} \langle g, \varphi(\mathbf{R}^{-1}\cdot) \rangle$$

Partial derivative operator $\partial^{\mathbf{n}}$ of multi-order $\mathbf{n}=(n_1,\ldots,n_d)$:

$$\langle \partial^{\mathbf{n}} g, \varphi \rangle \stackrel{\vartriangle}{=} \langle g, (-1)^{|\mathbf{n}|} \partial^{\mathbf{n}} \varphi \rangle$$

where
$$|\mathbf{n}|=n_1+\cdots+n_d$$
 and $\partial^{\mathbf{n}}\varphi(\boldsymbol{x})=\frac{\partial^{|\mathbf{n}|}\varphi(x_1,\dots,x_d)}{\partial x_1^{n_1}\cdots\partial x_d^{n_d}}$

4.2. Mean and covariance forms

 $G(\varphi)=\langle G,\varphi\rangle \text{ is an ordinary random variable for any }\varphi\in\mathcal{S}(\mathbb{R}^d)$ with mean $\mathbb{E}\{\langle G,\varphi\rangle\}=\mathbb{E}\{G(\varphi)\}=\int_{\mathbb{R}}xp_{G(\varphi)}(x)\mathrm{d}x$

Mean as a linear functional

$$\mathbb{E}\{\langle G, \varphi \rangle\} : \mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$$
 (linear and continuous map)

 \Leftrightarrow there exists a unique $\mu_G \in \mathcal{S}'(\mathbb{R}^d)$ (the mean of the GSP G) such that

$$\varphi \mapsto \mathbb{E}\{\langle G, \varphi \rangle\} = \langle \mathbb{E}\{G\}, \varphi \rangle = \langle \mu_G, \varphi \rangle$$

Examples

Constant process: $\varphi \mapsto G_{\text{Const}}(\varphi) = \langle p_0, \varphi \rangle$

$$\Rightarrow \mu_{G_{\text{Const}}} = p_0$$

Gaussian white noise: $\varphi \mapsto W_{\mathrm{Gauss}}(\varphi) = \mathcal{N}(0, \|\varphi\|_{L_2}^2)$

$$\Rightarrow \mu_{G_{\text{Gauss}}} = 0 : \varphi \mapsto \langle \mu_{G_{\text{Gauss}}}, \varphi \rangle = 0$$

11

Covariance form / operator

Extraction of second-order statistics with $X_1 = \langle G, \varphi_1 \rangle$ and $X_2 = \langle G, \varphi_2 \rangle$

$$C_G(\varphi_1, \varphi_2) \stackrel{\triangle}{=} \mathbb{E}\{\langle G - \mu_G, \varphi_1 \rangle \langle G - \mu_G, \varphi_2 \rangle\} = \text{Cov}(X_1 X_2)$$

Theorem (Properties of covariance form)

Let G be a GSP in $\mathcal{S}'(\mathbb{R}^d)$ with mean $\mathbb{E}\{G\} = \mu_G$ and the second-order property $\mathbb{E}\{\langle G, \varphi \rangle^2\} < \infty$ for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Then, its covariance form $C_G : \mathcal{S}(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$ has the following properties:

- Symmetry: $C_G(\varphi_1, \varphi_2) = C_G(\varphi_2, \varphi_1)$.
- **Bilinearity**: $C_G: (\varphi_1, \varphi_2) \mapsto C_G(\varphi_1, \varphi_2)$ is linear in each of its arguments.
- Continuity: C_G continuously maps $\mathcal{S}(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$.
- Positive-definiteness: $C_G(\varphi_1, \varphi_1) \geq 0$.
- Link with covariance operator: Unique $R_G: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ s.t.

$$C_G(\varphi_1, \varphi_2) = \langle R_G\{\varphi_1\}, \varphi_2 \rangle = \langle R_G\{\varphi_2\}, \varphi_1 \rangle.$$

• Kernel representation: Unique symmetric kernel $r_G \in \mathcal{S}'(\mathbb{R}^d \times \mathbb{R}^d)$ s.t.

$$C_G(\varphi_1, \varphi_2) = \langle r_G, \varphi_1 \otimes \varphi_2 \rangle = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} r_G(\boldsymbol{x}, \boldsymbol{y}) \varphi_1(\boldsymbol{x}) \varphi_2(\boldsymbol{y}) \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{y}.$$

Positive-definite covariance form / kernel / operator

$$C_G(\varphi, \varphi) = \langle R_G\{\varphi\}, \varphi \rangle \ge 0$$

- lacktriangledown Covariance function: $r_G(oldsymbol{x},oldsymbol{y}) = C_Gig(\delta(\cdot-oldsymbol{x}),\delta(\cdot-oldsymbol{y})ig)$
- $\qquad \qquad \textbf{Covariance operator:} \quad \mathrm{R}_G\{\varphi\}(\boldsymbol{x}) = \langle r_G(\boldsymbol{x},\cdot),\varphi\rangle = \int_{\mathbb{R}^d} r_G(\boldsymbol{x},\boldsymbol{y})\varphi(\boldsymbol{y})\mathrm{d}\boldsymbol{y}$
- Effect of a linear transformation $T: \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$

$$\begin{split} \mathbb{E}\{\langle \mathrm{T}\{G\},\varphi\rangle\} &= \langle \mu_G,\mathrm{T}^*\{\varphi\}\rangle = \langle \mathrm{T}\{\mu_G\},\varphi\rangle \quad \Leftrightarrow \quad \mu_{\mathrm{T}\{G\}} = \mathrm{T}\{\mu_G\} \\ &C_{\mathrm{T}G}(\varphi_1,\varphi_2) = C_G(\mathrm{T}^*\varphi_1,\mathrm{T}^*\varphi_2) = \langle \varphi_1,\mathrm{TR}_G\mathrm{T}^*\varphi_2\rangle \quad \Leftrightarrow \quad \mathrm{R}_{\mathrm{T}\{G\}} = \mathrm{TR}_G\mathrm{T}^* \end{split}$$

■ Special case of a stationary processes

$$\begin{split} r_G(\boldsymbol{x},\boldsymbol{y}) &= r_G\big(\boldsymbol{0},(\boldsymbol{y}-\boldsymbol{x})\big) = a_G(\boldsymbol{y}-\boldsymbol{x}) \\ a_G(\boldsymbol{\tau}) &\triangleq \mathbb{E}\{G(\boldsymbol{x})G(\boldsymbol{x}+\boldsymbol{\tau})\} \end{split} \quad \text{(classical autocorrelation function)}$$

13

Mean and Covariance of a random vector in $\,\mathbb{R}^N$

$$\boldsymbol{X} = (X_1, \dots, X_N)$$

- lacksquare Mean vector: $m{\mu_X} = \mathbb{E}\{m{X}\} \in \mathbb{R}^N$ $\Rightarrow \quad \mathbb{E}\{Y\} = \langle m{\mu_X}, \mathbf{u}
 angle$
- Covariance matrix: $\mathbf{C}_{m{X}} = \mathbb{E}\{(m{X}-m{\mu_X})(m{X}-m{\mu_X})^T\} \in \mathbb{R}^{N \times N}$ $\Rightarrow \operatorname{Cov}\{X_m,X_n\} = [\mathbf{C}_{m{X}}]_{m,n}$
- Covariance operator $\mathbb{R}^N o \mathbb{R}^N$: $\mathbf{u} \mapsto \mathbf{v} = \mathbf{C}_{\boldsymbol{X}} \mathbf{u}$ Positive definiteness: $\langle \mathbf{u}, \mathbf{C}_{\boldsymbol{X}} \mathbf{u} \rangle = \operatorname{Var}\{Y\} \geq 0$
- \blacksquare Effect of a linear transformation $\mathbf{T}:\mathbb{R}^N\to\mathbb{R}^M$

$$egin{aligned} m{Y} &= \mathbf{T} m{X} \in \mathbb{R}^M \ \ m{\mu_Y} &= \mathbb{E} \{ m{Y} \} = \mathbf{T} m{\mu_X} \in \mathbb{R}^M \ \ \mathbf{C_Y} &= \exp \{ (m{Y} - m{\mu_Y}) (m{Y} - m{\mu_Y})^T \} = \mathbf{T} \mathbf{C_Y} \mathbf{T}^T \quad \in \mathbb{R}^{M imes N} \end{aligned}$$

Mean-square continuity and RKHS

Classical stochastic process on \mathbb{R}^d = indexed collection of random variables $\{G(x): x \in \mathbb{R}^d\}$

GSP with **extended space** of test functions that includes $\delta(\cdot - \boldsymbol{x}_0)$ for any $\boldsymbol{x}_0 \in \mathbb{R}^d$

$$G(\boldsymbol{x}) \stackrel{\Delta}{=} \langle G, \delta(\cdot - \boldsymbol{x}) \rangle$$

$$\mathbb{E}\{G(\boldsymbol{x})\} = \mu_G(\boldsymbol{x}) \quad \text{ and } \quad r_G(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}\{\left(G(\boldsymbol{x}) - \mu_G(\boldsymbol{x})\right)\left(G(\boldsymbol{y}) - \mu_G(\boldsymbol{y})\right)\}$$

Definition

A real-valued stochastic process $\{G(x): x \in \mathbb{R}^d\}$ is said to be **mean-square continuous** at $x_0 \in \mathbb{R}^d$ if $\mathbb{E}\{[G(x_0)]^2\} < \infty$ and

$$\lim_{\boldsymbol{x}\to\boldsymbol{x}_0} \mathbb{E}\{\left[G(\boldsymbol{x}) - G(\boldsymbol{x}_0)\right]^2\} = 0.$$

Theorem (Mean-square continuity)

A second-order stochastic process G on \mathbb{R}^d is **mean-square continuous** over \mathbb{R}^d **if and only if** its **mean** and **covariance functions**, μ_G and r_G , are **continuous** over \mathbb{R}^d and $\mathbb{R}^d \times \mathbb{R}^d$, respectively. This also implies that r_G is a valid **reproducing kernel**.

$$\lim_{x \to x_0} \mathbb{E}\{ \left[G(x) - G(x_0) \right]^2 \} = \lim_{x \to x_0} \left(r_G(x, x) + r_G(x_0, x_0) - 2r_G(x, x_0) \right)$$

15

4.3 Characteristic functional

Definition

The characteristic functional $\widehat{\mathscr{P}}_G:\mathcal{S}(\mathbb{R}^d)\to\mathbb{C}$ of the generalized stochastic process G in $\mathcal{S}'(\mathbb{R}^d)$ is given by

$$\widehat{\mathscr{P}}_G(\varphi) \stackrel{\triangle}{=} \mathbb{E}\{e^{\mathrm{j}\langle G, \varphi \rangle}\} = \int_{\mathscr{S}'(\mathbb{R}^d)} e^{\mathrm{j}\langle g, \varphi \rangle} \mathscr{P}_G(\mathrm{d}g)$$

where the right-hand side is an abstract Lebesgue integral over the space $\mathcal{S}'(\mathbb{R}^d)$.

Examples

$$\widehat{\mathscr{P}}_{G_{\mathrm{Const}}}(\varphi) = \mathbb{E}\{\mathrm{e}^{\mathrm{j}\langle G_{\mathrm{Const}},\varphi\rangle}\} = \mathrm{e}^{\mathrm{j}\langle p_0,\varphi\rangle}$$

 \blacksquare Finite-dimensional Gaussian process $G_{N_0} = \sum_{n=1}^{N_0} A_n p_n$ with $A_n \sim \mathcal{N}(0, \sigma_n^2)$

$$\Rightarrow \quad Y = \langle G_{N_0}, \varphi \rangle \sim \mathcal{N}(0, \sigma_Y^2) \text{ with } \sigma_Y^2 = \sum_{n=1}^{N_0} \sigma_n^2 |\langle p_n, \varphi \rangle|^2$$

$$\Rightarrow \hat{p}_Y(\xi) = \mathbb{E}\{e^{i\xi Y}\} = \exp\left(-\frac{1}{2}\xi^2\sigma_Y^2\right) \quad \Rightarrow \quad \widehat{\mathscr{P}}_{G_{N_0}}(\varphi) = \exp\left(-\frac{1}{2}\sum_{n=1}^{N_0}\sigma_n^2|\langle p_n,\varphi\rangle|^2\right)$$

16

Continuity and positive definiteness

Definition

A functional $F: \mathcal{X} \to \mathbb{C}$ is said to be **continuous** (with respect to the topology of the function space \mathcal{X}) if, for any convergent sequence (φ_n) in \mathcal{X} with limit $\varphi \in \mathcal{X}$, the sequence $F(\varphi_n)$ converges to $F(\varphi)$; that is, $\lim_n F(\varphi_n) = F(\lim_n \varphi_n)$.

Definition

A complex-valued functional $F:\mathcal{X}\to\mathbb{C}$ defined over the function space \mathcal{X} is said to be **positive-definite** if

$$\sum_{m=1}^{N} \sum_{n=1}^{N} z_m F(\varphi_m - \varphi_n) \overline{z}_n \ge 0 \tag{1}$$

for every possible choice of $\varphi_1,\ldots,\varphi_N\in\mathcal{X},\ z_1,\ldots,z_N\in\mathbb{C}$, and $N\in\mathbb{N}^+$. Likewise, it is said to be *conditionally positive-definite* if (1) holds subject to the constraint $\sum_{n=1}^N z_n=0$.

17

Positive-definite functionals: fundamental examples

 \mathcal{H} : Hilbert space with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$.

- $lackbox{ } F(\varphi) = \mathrm{e}^{-rac{1}{2}\|arphi\|_{\mathcal{H}}^2}$ is positive-definite over \mathcal{H}
- $lacksquare G(arphi) = \log F(arphi) = -rac{1}{2}\|arphi\|_{\mathcal{H}}^2$ is conditionally positive-definite over \mathcal{H}

$$\begin{split} -\frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} z_m \overline{z}_n \|\varphi_m - \varphi_n\|_{\mathcal{H}}^2 = \\ &= -\frac{1}{2} \sum_{m=1}^{N} \overline{z}_n \sum_{m=1}^{N} z_m \|\varphi_m\|_{\mathcal{H}}^2 - \frac{1}{2} \sum_{m=1}^{N} z_m \sum_{n=1}^{N} \overline{z}_n \|\varphi_n\|_{\mathcal{H}}^2 + \sum_{m=1}^{N} \sum_{m=1}^{N} z_m \overline{z}_n \langle \varphi_m, \varphi_n \rangle_{\mathcal{H}} \\ &= \sum_{m=1}^{N} \sum_{n=1}^{N} z_m \overline{z}_n \langle \varphi_m, \varphi_n \rangle_{\mathcal{H}} = \|\sum_{n=1}^{N} z_n \varphi_n\|_{\mathcal{H}}^2 \ge 0, \end{split}$$

Schoenberg's correspondence theorem

 $G(\varphi)$ conditionally positive-definite over \mathcal{X}

$$\Leftrightarrow \quad F(\varphi) = \mathrm{e}^{\tau G(\varphi)} \text{ positive-definite over } \mathcal{X} \text{ for any } \tau \in \mathbb{R}^+$$

Characteristic functional: key properties

Theorem

The characteristic functional $\widehat{\mathscr{P}}_G:\mathcal{S}(\mathbb{R}^d)\to\mathbb{C}$ of a generalized stochastic process G in $\mathcal{S}'(\mathbb{R}^d)$ enjoys the following properties:

- 1. $\widehat{\mathscr{P}}_G$ is **continuous**, bounded (i.e. $|\widehat{\mathscr{P}}_G(\varphi)| \leq 1$), Hermitian-symmetric (i.e., $\widehat{\mathscr{P}}_G(-\varphi) = \overline{\widehat{\mathscr{P}}_G(\varphi)}$) and **normalized** such that $\widehat{\mathscr{P}}_G(0) = 1$.
- 2. $\widehat{\mathscr{P}}_G$ is positive-definite.
- 3. Connection with joint pdf: Let $\varphi_1,\ldots,\varphi_N\in\mathcal{S}(\mathbb{R}^d)$ be any fixed collection of test functions. Then, the joint pdf of the random vector $\boldsymbol{G}=(\langle G,\varphi_1\rangle,\ldots,\langle G,\varphi_N\rangle)$ is given by the following finite-dimensional inverse Fourier transform

$$p_{\mathbf{G}}(\mathbf{x}) = \int_{\mathbb{R}^N} \widehat{\mathscr{P}}_G(\xi_1 \varphi_1 + \dots + \xi_N \varphi_N) e^{-\mathrm{j}\langle \mathbf{\xi}, \mathbf{x} \rangle} \frac{\mathrm{d}\mathbf{\xi}}{(2\pi)^N}.$$

with Fourier-domain variable $\boldsymbol{\xi}=(\xi_1,\cdots,\xi_N).$

4. Linear transformation: Let T be a continuous linear operator $\mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ and $\mu_0 \in \mathcal{S}'(\mathbb{R}^d)$ some constant generalized function. Then, the characteristic functional of $Q = T\{G\} + \mu_0$ is

$$\widehat{\mathscr{P}}_Q(\varphi) = \widehat{\mathscr{P}}_{\mathrm{T}\{G\} + \mu_0}(\varphi) = \widehat{\mathscr{P}}_G(\mathrm{T}^*\varphi) \mathrm{e}^{\mathrm{j}\langle \mu_0, \varphi \rangle}$$

where $\mathrm{T}^*:\mathcal{S}(\mathbb{R}^d)\to\mathcal{S}(\mathbb{R}^d)$ is the (continuous) adjoint of $\mathrm{T}.$

5. Sum of independent processes: Let G_1 and G_2 be two independent generalized stochastic processes with characteristic functionals $\widehat{\mathscr{P}}_{G_1}$ and $\widehat{\mathscr{P}}_{G_2}$, respectively. Then, the characteristic functional of $G=G_1+G_2$ is

$$\widehat{\mathscr{P}}_{G_1+G_2}(\varphi) = \widehat{\mathscr{P}}_{G_1}(\varphi)\widehat{\mathscr{P}}_{G_2}(\varphi).$$

19

Characteristic function: key properties

Random vector in \mathbb{R}^N : $\boldsymbol{X} = (X_1, \dots, X_N)$ with pdf $p_{\boldsymbol{X}} : \mathbb{R}^N \to \mathbb{R}^+$

Theorem

The characteristic function $\hat{p}_{X}(\xi) = \mathbb{E}\{e^{\mathrm{i}\langle \xi, X \rangle}\} = \int_{\mathbb{R}^{N}} p_{X}(x) e^{\mathrm{i}\langle \xi, x \rangle} \mathrm{d}x$ enjoys the following properties:

- 1. $\hat{p}_{\boldsymbol{X}}: \mathbb{R}^N \to \mathbb{C}$ is **continuous**, bounded (i.e., $|\hat{p}_{\boldsymbol{X}}(\boldsymbol{\xi})| \leq 1$), Hermitian-symmetric, and **normalized** such that $\hat{p}_{\boldsymbol{X}}(\boldsymbol{0}) = 1$.
- 2. $\hat{p}_{\boldsymbol{X}}$ is positive-definite.
- 3. Invertibility: $p_{\boldsymbol{X}}(\boldsymbol{x}) = \mathcal{F}^{*-1}\{\hat{p}_{\boldsymbol{X}}\}(\boldsymbol{x}) = \int_{\mathbb{D}^N} \hat{p}_{\boldsymbol{X}}(\boldsymbol{\xi}) \mathrm{e}^{-\mathrm{j}\langle \boldsymbol{\xi}, \boldsymbol{x} \rangle} \frac{\mathrm{d}\boldsymbol{\xi}}{(2\pi)^N}.$
- 4. Linear transformation: Let $\mathbf{H} \in \mathbb{R}^{M \times N}$ be an arbitrary transformation matrix and $\mathbf{b} \in \mathbb{R}^M$ some constant offset vector. Then, the characteristic function of $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{b} \in \mathbb{R}^M$ is

$$\hat{p}_{\boldsymbol{X}}(\boldsymbol{\xi}) = \hat{p}_{\mathbf{H}\boldsymbol{X} + \mathbf{b}}(\boldsymbol{\xi}) = \hat{p}_{\boldsymbol{X}}(\mathbf{H}^T \boldsymbol{\xi}) e^{\mathrm{j} \mathbf{b}^T \boldsymbol{\xi}}$$

with Fourier-domain variable $\boldsymbol{\xi} \in \mathbb{R}^M$ and $\mathbf{H}^T \boldsymbol{\xi} \in \mathbb{R}^N$.

5. Sum of independent random variables: Let $X_1 \in \mathbb{R}^N$ and $X_2 \in \mathbb{R}^N$ be two independent random vectors with cfs \hat{p}_{X_1} and \hat{p}_{X_1} , respectively. Then, the characteristic function of $Y = X_1 + X_2$ is

$$\hat{p}_{X_1+X_2}(\xi) = \hat{p}_{X_1}(\xi)\hat{p}_{X_2}(\xi).$$

6. Preservation of separability (or joint of of a collection of independent random variables). Let $X=(X_1,X_2)$ with $p_X(x)=p_{(X_1,X_2)}(x_1,x_2)=p_{X_1}(x_1)p_{X_2}(x_2)$. Then,

$$\hat{p}_{(\boldsymbol{X}_1,\boldsymbol{X}_2)}(\boldsymbol{\xi}) = \hat{p}_{\boldsymbol{X}_1}(\boldsymbol{\xi}_1)\hat{p}_{\boldsymbol{X}_2}(\boldsymbol{\xi}_2) \quad \text{ with } \boldsymbol{\xi} = (\boldsymbol{\xi}_1,\boldsymbol{\xi}_2).$$

Functional characterization theorems

Theorem (Minlos-Bochner)

A functional $\widehat{\mathscr{P}}_G: \mathcal{S}(\mathbb{R}^d) \to \mathbb{C}$ is the characteristic functional of a generalized stochastic G in $\mathcal{S}'(\mathbb{R}^d)$ if and only if it is positive-definite, continuous and normalized with $\widehat{\mathscr{P}}_G(0)=1$. This is equivalent to the existence of a unique probability measure \mathscr{P}_G on $\mathcal{S}'(\mathbb{R}^d)$, such that

$$\widehat{\mathscr{P}}_G(\varphi) = \int_{\mathcal{S}'(\mathbb{R}^d)} e^{-j\langle g, \varphi \rangle} \mathscr{P}_G(dg) = \mathbb{E}\{e^{-j\langle G, \varphi \rangle}\}.$$

Theorem (Extension of the domain)

Let $\widehat{\mathscr{P}}_G$ be a valid characteristic functional whose domain of continuity is extendable to some topological vector space \mathcal{X} with the property that $\mathcal{S}(\mathbb{R}^d)\subseteq\mathcal{X}\subseteq\mathcal{S}'(\mathbb{R}^d)$. Then, the **extended functional** $\widehat{\mathscr{P}}_G:\mathcal{X}\to\mathbb{C}$ is **continuous**, **positive-definite** and **normalized**, which implies that the random variable $G(\phi)=\langle G,\phi\rangle$ is well-defined for any $\phi\in\mathcal{X}$.

- lacksquare Transfer of positive-definiteness: denseness of $\mathcal{S}(\mathbb{R}^d)$ in \mathcal{X} + continuity of $\widehat{\mathscr{P}}_G$
- Let $X = \langle G, \phi_0 \rangle$ with $\phi_0 \in \mathcal{X}$ fixed. Then, the map $\mathbb{R} \to \mathbb{C}$

$$\xi \mapsto \widehat{\mathscr{P}}_G(\xi \phi_0) = \mathbb{E}\{e^{j\xi\langle G,\phi_0\rangle}\} = \mathbb{E}\{e^{j\xi X}\} = \hat{p}_X(\xi)$$

is continuous, positive-definite and normalized. Hence, $\mathcal X$ is a bona-fide random variable (by Bochner).

21

Distributional extension of Bochner's theorem

The (complex-valued) generalized function $g:\mathcal{S}(\mathbb{R}^d)\to\mathbb{C}$ is said to be positive-definite if

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \overline{\varphi(\boldsymbol{x})} g(\boldsymbol{x} - \boldsymbol{y}) \varphi(\boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} = \langle g * \varphi, \overline{\varphi} \rangle = \langle g, (\overline{\varphi}^{\vee} * \varphi) \rangle \ge 0$$

where φ^{\vee} denotes the reversed version φ ; i.e., $\varphi^{\vee}(x) \stackrel{\triangle}{=} \varphi(-x)$ for any $x \in \mathbb{R}^d$.

Theorem (Bochner-Schwartz)

A generalized function $\hat{g} \in \mathcal{S}'(\mathbb{R}^d)$ is **positive-definite if and only if** it is the generalized Fourier transform of a **positive distribution** $g \geq 0$; that is,

$$\langle \hat{g}, \varphi \rangle = \langle g, \hat{\varphi} \rangle = \int_{\mathbb{R}^d} \hat{\varphi}(\boldsymbol{x}) g(\boldsymbol{x}) d\boldsymbol{x}$$

where $\hat{\varphi}(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \varphi(\boldsymbol{x}) \mathrm{e}^{-\mathrm{j}\langle \boldsymbol{\omega}, \boldsymbol{x} \rangle} \mathrm{d}\boldsymbol{x}$ is the Fourier transform of the test function $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Moreover, if \hat{g} is continuous at the origin with $\hat{g}(0) = 1$, then it is the (ordinary) Fourier transform of a Borel measure $g \geq 0$ with $\int_{\mathbb{R}^d} g(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} = 1$.

Key idea (Generalized Parseval's relation)

$$\langle \hat{g}, (\varphi^{\vee} * \varphi) \rangle = \langle \hat{g}, \phi \rangle = \langle g, \hat{\phi} \rangle = \langle g, |\hat{\varphi}|^2 \rangle \ge 0 \quad \Rightarrow \quad g \ge 0$$

4.4 Characterization of Gaussian processes

Theorem (Generalized Gaussian processes)

A generalized stochastic process G in $\mathcal{S}'(\mathbb{R}^d)$ is Gaussian if and only if $\widehat{\mathscr{P}}_G(\varphi) = \mathbb{E}\{\mathrm{e}^{\mathrm{j}\langle G, \varphi \rangle}\} = \exp\left(-\frac{1}{2}C_G(\varphi,\varphi) + \mathrm{j}\langle \mu_G, \varphi \rangle\right)$ where $C_G: \mathcal{S}(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$ is a continuous positive-definite bilinear form and $\mu_G \in \mathcal{S}'(\mathbb{R}^d)$. This generalized Gaussian process is uniquely characterized by its mean

$$\mathbb{E}\{G\} = \mu_G$$

and its covariance operator $R_G: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ defined as

$$\varphi \mapsto \langle R_G \{ \varphi \}, \cdot \rangle = C_G(\varphi, \cdot),$$

which is indicated as $G \sim \mathcal{N}(\mu_G, \mathbf{R}_G)$ in $\mathcal{S}'(\mathbb{R}^d)$, whereas the covariance form of the process is C_G , as the notation suggests.

- Special case: Gaussian white noise
 - Arr $C_{W_{\text{Gauss}}}(\varphi_1, \varphi_2) = \langle \varphi_1, \varphi_2 \rangle_{L_2}$ or, equivalently, $R_{W_{\text{Gauss}}} = \text{Identity}$

$$\widehat{\mathscr{P}}_{W_{\mathrm{Gauss}}}(\varphi) = \exp\left(-\frac{1}{2}\|\varphi\|_{L_2(\mathbb{R}^d)}^2\right) \quad \Leftrightarrow \quad W_{\mathrm{Gauss}} \sim \mathcal{N}(0, \mathrm{Identity}) \text{ in } \mathcal{S}'(\mathbb{R}^d)$$

Note: Domain extendable from $\mathcal{S}(\mathbb{R}^d)$ to $L_2(\mathbb{R}^d)$

23

Multivariate Gaussian distribution

Definition

The characteristic function of a multivariate Gaussian random vector of dimension N with mean $\mu \in \mathbb{R}^N$ and symmetric positive-definite covariance matrix $\mathbf{C} \in \mathbb{R}^{N \times N}$ is

$$\hat{p}_{\mathrm{Gauss}}(\boldsymbol{\xi}|\boldsymbol{\mu}, \mathbf{C}) = \exp\left(-\frac{1}{2}\boldsymbol{\xi}^T\mathbf{C}\boldsymbol{\xi} + \mathrm{j}\boldsymbol{\mu}^T\boldsymbol{\xi}\right).$$

Bilinear form
$$\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$
: $(\xi_1, \xi_2) \mapsto \langle \xi_1, \mathbf{C} \xi_2 \rangle$
Linear form $\mathbb{R}^N \to \mathbb{R}$: $\xi \mapsto \langle \mu, \xi \rangle$

Notation

 $m{X} \sim \mathcal{N}(m{\mu}, \mathbf{C})$: The random vector $m{X} = (X_1, \dots, X_N)$ is multivariate Gaussian with mean $m{\mu}$ and covariance \mathbf{C}

$$p_{\mathrm{Gauss}}(\boldsymbol{X}|\boldsymbol{\mu}, \mathbf{C}) = \frac{1}{\sqrt{(2\pi)^N |\mathrm{det}(\mathbf{C})|}} \exp\left(-\frac{1}{2}(\boldsymbol{X} - \boldsymbol{\mu})^T \mathbf{C}^{-1} (\boldsymbol{X} - \boldsymbol{\mu})\right)$$

Proposition (Invariance by affine transformation)

Consider some fixed matrix $\mathbf{H} \in \mathbb{R}^{N_2 \times N_1}$, an offset vector $\mathbf{b} \in \mathbb{R}^{N_1}$ and some N_1 -dimensional Gaussian random vector $\mathbf{X}_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1)$. Then, $\mathbf{X}_2 = \mathbf{H}\mathbf{X}_1 + \mathbf{b} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2)$ with

$${m \mu}_2 = {\mathbf H}{m \mu}_1 + {\mathbf b} \qquad \text{and} \qquad {\mathbf C}_2 = {\mathbf H}{\mathbf C}_1 {\mathbf H}^T.$$

Proof of Gaussian characterization theorem

- Existence and unicity of generalized stochastic process G in $\mathcal{S}'(\mathbb{R}^d)$ $\varphi \mapsto \exp\left(-\frac{1}{2}\langle \mathrm{R}_G\{\varphi\}, \varphi\rangle + \mathrm{j}\langle \mu_G, \varphi\rangle\right) \text{ is positive-definite, continuous, and normalized}$ (due to the positive-definiteness of R_G and Schoenberg's correspondence)
 - \Rightarrow G is a GSP in $\mathcal{S}'(\mathbb{R}^d)$ (by Bochner-Minlos' theorem)
- \blacksquare Determination of characteristic function of $X=\langle G,\varphi\rangle$:

$$\begin{split} \mathbb{E}\{\mathrm{e}^{\mathrm{j}\omega X}\} &= \mathbb{E}\{\mathrm{e}^{\mathrm{j}\langle G,\omega\varphi\rangle}\} = \widehat{\mathscr{P}}_G(\omega\varphi) \\ &= \exp\left(-\frac{1}{2}\omega^2 C_G(\varphi,\varphi) + \mathrm{j}\omega\langle\mu_G,\varphi\rangle\right) = \mathrm{e}^{-\frac{1}{2}\omega^2\sigma^2}\mathrm{e}^{\mathrm{j}\omega\mu} \end{split}$$

- \Rightarrow Gaussian of with mean $\mu = \langle \mu_G, \varphi \rangle$ and variance $\sigma^2 = C_G(\varphi, \varphi) = \operatorname{Var}\{X\}$
- Identification of covariance form (using bilinearity) with $X_1 = \langle G, \varphi_1 \rangle$ and $X_2 = \langle G, \varphi_2 \rangle$

$$\operatorname{Cov}(X_1, X_2) = \frac{1}{4} \left(\overbrace{C_G(\varphi_1 + \varphi_2, \varphi_1 + \varphi_2)}^{\operatorname{Var}(X_1 + X_2)} + \overbrace{C_G(\varphi_1 - \varphi_2, \varphi_1 - \varphi_2)}^{\operatorname{Var}(X_1 - X_2)} \right) = C_G(\varphi_1, \varphi_2)$$

lacksquare Continuity of $C_G: \mathcal{S}(\mathbb{R}^d) imes \mathcal{S}(\mathbb{R}^d) o \mathbb{R}$ is a necessary condition (see covariance theorem)

25

Invariance to coordinate transformations

Continuous linear functional on $\mathcal{S}(\mathbb{R}^d)$: $g \in \mathcal{S}'(\mathbb{R}^d)$

Continuous linear operator $T: \mathcal{S}(\mathbb{R}^d) o \mathcal{S}'(\mathbb{R}^d)$

- Definition
 - g and T respectively are said to be
 - lacksquare shift-invariant if, for any $arphi\in\mathcal{S}(\mathbb{R}^d)$ and $oldsymbol{x}_0\in\mathbb{R}^d$,

$$\langle g(\cdot - \boldsymbol{x}_0), \varphi \rangle \stackrel{\triangle}{=} \langle g, \varphi(\cdot + \boldsymbol{x}_0) \rangle = \langle g, \varphi \rangle$$

$$T\{\varphi(\cdot - \boldsymbol{x}_0)\} = T\{\varphi\}(\cdot - \boldsymbol{x}_0)$$

scale-invariant of order γ if, for any $a \in \mathbb{R}^+$,

$$\langle g(a\cdot), \varphi \rangle \stackrel{\Delta}{=} \langle g, |a|^{-d} \varphi(\cdot/a) \rangle = a^{\gamma} \langle g, \varphi \rangle$$

$$T\{\varphi(a\cdot)\} = a^{\gamma}T\{\varphi\}(a\cdot)$$

• rotation-invariant if, for any rotation matrix $\mathbf{R}: \mathbb{R}^d \to \mathbb{R}^d$,

$$\langle g(\mathbf{R}\cdot), \varphi \rangle \stackrel{\triangle}{=} \langle g, \varphi(\mathbf{R}^{-1}\cdot) \rangle = \langle g, \varphi \rangle$$

$$T\{\varphi(\mathbf{R}\cdot)\} = T\{\varphi\}(\mathbf{R}\cdot).$$

Categorization of Gaussian processes

Proposition (Types of Gaussian processes)

Let $G \sim \mathcal{N}(\mu_G, \mathrm{R}_G)$ be a generalized Gaussian stochastic process in $\mathcal{S}'(\mathbb{R}^d)$ with mean $\mu_G \in \mathcal{S}'(\mathbb{R}^d)$ and covariance operator $\mathrm{R}_G : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$. Then, depending on the properties of μ_G and R_G , the process G is:

- **stationary** iff. both μ_G and R_G are shift-invariant; that is, when $\mu_G = \mathrm{Const}$ and R_G is a (positive-definite) convolution operator.
- **self-similar** with Hurst exponent H iff. μ_G and R_G are scale-invariant of order H and 2H;
- **isotropic** iff. both μ_G and R_G are rotation-invariant;
- mean-square continuous on \mathbb{R}^d iff. there exists some $\alpha \in \mathbb{R}$ such that $\mu_G = \mathbb{E}\{G\} \in C_{\mathrm{b},\alpha}(\mathbb{R}^d)$ and $r_G \in C_{\mathrm{b},\alpha}(\mathbb{R}^d \times \mathbb{R}^d)$ where r_G is the kernel of the covariance operator R_G ; i.e, the mean and the covariance functions are both continuous and of slow growth.

Examples

- Gaussian white noise $W_{\text{Gauss}} \sim \mathcal{N}(0, \text{Identity})$ in $\mathcal{S}'(\mathbb{R}^d)$: stationary, isotropic, self-similar
- Brownian motion $G_{Wiener} \sim \mathcal{N}(0, R_D)$ in $\mathcal{S}'(\mathbb{R})$: self-similar, mean-square continuous Covariance function: $r_{Wiener}(x, y) = h_D(x, y) = \frac{1}{2} \big(|x| + |y| |x y| \big)$

27

Classical Gaussian processes and RKHS

Preliminary observations

- \blacksquare Domain of $F(\varphi)=\mathrm{e}^{-\frac{1}{2}\|\varphi\|_{\mathcal{H}'}^2}$ can be extended from $\mathcal{S}(\mathbb{R}^d)$ to \mathcal{H}'
- lacktriangledown To recover a classical process on \mathbb{R}^d , \mathcal{H}' should include $\delta(\cdot-m{x}_0)$ for any $m{x}_0\in\mathbb{R}^d$

Corollary (Equivalence between Gaussian processes and RKHS)

A GSP G in $\mathcal{S}'(\mathbb{R}^d)$ is equivalent to a "classical" Gaussian process on \mathbb{R}^d if and only if its characteristic functional is of the form

$$\widehat{\mathscr{P}}_{G}(\varphi) = \exp\left(-\frac{1}{2} \|\varphi\|_{\mathcal{H}'}^{2} + j\langle \mu_{G}, \varphi \rangle\right)$$

with

$$\|\varphi\|_{\mathcal{H}'}^2 = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \varphi(\boldsymbol{x}) r_G(\boldsymbol{x}, \boldsymbol{y}) \varphi(\boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} = \langle \varphi, R_G \{\varphi\} \rangle$$

and $\mu_G \in \mathcal{H}$, where $r_G : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is the **reproducing kernel** of some RKHS $\mathcal{H} \subseteq \mathcal{S}'(\mathbb{R}^d)$. This means that $G \sim \mathcal{N}(\mu_G, \mathbf{R}_G)$ and that its sample values, $\{G(\boldsymbol{x}) : \boldsymbol{x} \in \mathbb{R}^d\}$, are well-defined Gaussian random variables with mean $\mathbb{E}\{G(\boldsymbol{x})\} = \mu_G(\boldsymbol{x})$ and covariance function

$$\mathbb{E}\left\{\left(G(\boldsymbol{x}) - \mu_G(\boldsymbol{x})\right)\left(G(\boldsymbol{y}) - \mu_G(\boldsymbol{y})\right)\right\} = r_G(\boldsymbol{x}, \boldsymbol{y}) = R_G\{\delta(\boldsymbol{\cdot} - \boldsymbol{y})\}(\boldsymbol{x}).$$

Finally, G is mean-square continuous if and only if $r_G \in C_{b,\alpha}(\mathbb{R}^d \times \mathbb{R}^d)$ for some $\alpha \in \mathbb{R}$, which implies that $\mathcal{H} \subseteq C_{b,\alpha}(\mathbb{R}^d)$.

Gaussian marginals

Proposition

Let $G \sim \mathcal{N}(\mu_G, \mathbf{R}_G)$ with $\mathbf{R}_G : \varphi \mapsto \int_{\mathbb{R}^d} r_G(\cdot, \boldsymbol{y}) \varphi(\boldsymbol{y}) \mathrm{d} \boldsymbol{y}$ be a Gaussian process on \mathbb{R}^d whose covariance function $r_G : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is the reproducing kernel of a RKHS $\mathcal{H} \subseteq \mathcal{S}'(\mathbb{R}^d)$ and such that $\mu_G \in \mathcal{H}$. Then, $\boldsymbol{Y} = (\langle G, \varphi_1 \rangle, \dots, \langle G, \varphi_N \rangle)$ is a well-defined multivariate Gaussian vector if and only if $\varphi_1, \dots, \varphi_N \in \mathcal{H}'$. Specifically, $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{\mu_Y}, \mathbf{C_Y})$ with mean vector

$$\boldsymbol{\mu}_{\boldsymbol{Y}} = (\langle \mu_G, \varphi_1 \rangle, \dots, \langle \mu_G, \varphi_N \rangle) \in \mathbb{R}^N$$

and covariance matrix $\mathbf{C}_{\mathbf{Y}} \in \mathbb{R}^{N imes N}$ such that

$$[\mathbf{C}_{\mathbf{Y}}]_{m,n} = \langle \mathbf{R}_G \{ \varphi_m \}, \varphi_n \rangle = \langle \varphi_m, \varphi_n \rangle_{\mathcal{H}'}$$
$$= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \varphi_m(\mathbf{x}) r_G(\mathbf{x}, \mathbf{y}) \varphi_n(\mathbf{y}) d\mathbf{x} d\mathbf{y}.$$

29

4.5 Gaussian solutions of SDE

Adjoint pair of continuous linear operators: $T: \mathcal{S}'(\mathbb{R}^d) \to L_2(\mathbb{R}^d)$ and $T^*: \mathcal{S}(\mathbb{R}^d) \to L_2(\mathbb{R}^d)$

Linear transformation of a white noise

$$\omega \mapsto w = W_{\text{Gauss}}(\omega) \mapsto s = S(\omega) = T\{w\} + \mu_S$$

$$\xrightarrow{w} \qquad \qquad T \qquad \xrightarrow{s} \qquad \qquad S \sim \mathcal{N}(\mu_G, TT^*)$$
 white noise

Generation of Gaussian process with factorizable covariance operator: $\mathrm{R}_S = \mathrm{TT}^*$

■ Innovation model = stochastic differential equation

$$Ls = w \Rightarrow s = L^{-1}w$$

Coercivity hypothesis: Continuity of $L^{-1*} = T^* : \mathcal{S}(\mathbb{R}^d) \to L_2(\mathbb{R}^d)$

Operators with non-trivial null space

L is **spline-admissible** with finite-dimensional null space $\mathcal{N}_{\mathrm{L}} = \mathrm{span}\{p_n\}_{n=1}^{N_0}$

Biorthogonal boundary functionals $\phi: \mathcal{H}'_{\mathrm{L}}(\mathbb{R}^d) \to \mathbb{R}^{N_0}$ s.t. $\phi(p_n) = \mathbf{e}_n$

Solution of linear stochastic differential equation

Imposing N_0 boundary conditions

$$Ls = w$$
 s.t. $\phi(s) = 0$

Generalization:

Ls =
$$w$$
 s.t. $\phi(s) = (a_1, ..., a_{N_0})$

 a_n : realizations of independent Gaussian variables A_n with zero mean and variance σ_n^2

$$\Rightarrow \qquad s = \mathcal{L}_{\phi}^{-1} w + \sum_{n=1}^{N_0} a_n p_n$$

31

Explicit solutions of linear SDE

w: realization of white Gaussian noise

 a_n : realizations of independent Gaussian random variables $A_n \sim \mathcal{N}(0, \sigma_n^2)$

$$Ls = w$$
 s.t. $\phi(s) = (a_1, \dots, a_{N_0})$ \Rightarrow $s = L_{\phi}^{-1}w + \sum_{n=1}^{N_0} a_n p_n$

Characterization of underlying stochastic process

$$S = \mathcal{L}_{\phi}^{-1} W_{\text{Gauss}} + \sum_{n=1}^{N_0} A_n p_n \quad \sim \mathcal{N}(0, \mathcal{R}_S)$$

$$\text{Characteristic form: } \widehat{\mathscr{P}_S}(\varphi) = \exp\left(-\tfrac{1}{2}\|\mathbf{L}_{\pmb{\phi}}^{-1*}\varphi\|_{L_2}^2 - \tfrac{1}{2}\sum_{n=1}^{N_0}\sigma_n^2|\langle p_n,\varphi\rangle|^2\right)$$

Covariance function:
$$r_S(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}\{S(\boldsymbol{x})S(\boldsymbol{y})\} = a_{\boldsymbol{\phi}}(\boldsymbol{x}, \boldsymbol{y}) + \sum_{n=1}^{N_0} \sigma_n^2 p_n(\boldsymbol{x}) p_n(\boldsymbol{y})$$

Covariance operator:
$$R_S = A_{\phi} + \sum_{n=1}^{N_0} \sigma_n^2 P_{p_n}$$
 with $P_u : \varphi \mapsto u \langle u, \varphi \rangle$

⇒ same form as in Section 2 on RKHS !!!!

4.6 MMSE solution of linear inverse problems

Linear measurement model: $s \mapsto \mathbf{y} = \boldsymbol{\nu}(s) + \mathbf{n} \in \mathbb{R}^M$

Hypotheses

- the unknown signal $s = S(\omega) \in \mathcal{S}'(\mathbb{R}^d)$ is a realization of a **stochastic process** S;
- $ightharpoonup r_S: \mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}$ is the **reproducing kernel** of a RKHS $\mathcal{H} \subseteq C_{\mathrm{b},lpha}(\mathbb{R}^d)$;
- S is a Gaussian process on \mathbb{R}^d with mean $\mathbb{E}\{S(\boldsymbol{x})\} = \mu_S(\boldsymbol{x}) \in \mathcal{H}$ and covariance function $\mathbb{E}\left\{\left(S(\boldsymbol{x}) \mu_S(\boldsymbol{x})\right)\left(S(\boldsymbol{y}) \mu_S(\boldsymbol{y})\right)\right\} = r_S(\boldsymbol{x}, \boldsymbol{y});$
- $\mathbf{v}: s \mapsto \mathbf{v}(s) = (\langle \nu_1, s \rangle, \dots, \langle \nu_M, s \rangle)$ with $\nu_m \in \mathcal{H}'$ is a linear operator that extracts M measurements from the signal s;
- $\mathbf{n} \in \mathbb{R}^M$ is an independent additive white Gaussian noise (AWGN) component whose entries are i.i.d. with zero-mean and variance σ_0^2 .

33

MMSE estimator at location x

Generalized Gauss-Markov theorem

The minimum mean-square error (MMSE) estimation of s(x) given the noisy linear observation $y = \nu(s) + n$ of s is

$$s_{\text{MMSE}}(\boldsymbol{x}|\boldsymbol{y}) = \mathbb{E}\{s(\boldsymbol{x})|\boldsymbol{y}\} = \mu_S(\boldsymbol{x}) + \boldsymbol{\nu}^*(\boldsymbol{x})^T(\boldsymbol{G} + \sigma_0^2 \boldsymbol{I}_M)^{-1} (\boldsymbol{y} - \boldsymbol{\nu}(\mu_S)),$$

while the corresponding estimation error is

$$\mathbb{E}\left\{\left(s_{\mathrm{MMSE}}(\boldsymbol{x}|\boldsymbol{y}) - s(\boldsymbol{x})\right)^{2}\right\} = r_{S}(\boldsymbol{x},\boldsymbol{x}) - \boldsymbol{\nu}^{*}(\boldsymbol{x})^{T}(\mathbf{G} + \sigma_{0}^{2}\mathbf{I}_{M})^{-1}\boldsymbol{\nu}^{*}(\boldsymbol{x}).$$

Here, $\boldsymbol{\nu}^* = (\nu_1^*, \dots, \nu_M^*)$ is the Riesz conjugate of the measurement operator $\boldsymbol{\nu}$, while $\mathbf{G} \in \mathbb{R}^{M \times M}$ is the corresponding Gram/covariance matrix.

$$egin{aligned}
u_m^*(oldsymbol{x}) &= \int_{\mathbb{R}^d} r_S(oldsymbol{x}, oldsymbol{y})
u_m(oldsymbol{y}) \mathrm{d} oldsymbol{y} \\ [\mathbf{G}]_{m,n} &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d}
u_m(oldsymbol{x}) r_S(oldsymbol{x}, oldsymbol{y})
u_n(oldsymbol{y}) \mathrm{d} oldsymbol{x} \mathrm{d} oldsymbol{y} \end{aligned}$$

Proof of generalized Gauss-Markov theorem

Linear measurement model: $s \mapsto \mathbf{y} = \boldsymbol{\nu}(s) + \mathbf{n} \in \mathbb{R}^M$

- lacktriangled MMSE solution: $s_{\mathrm{MMSE}}(oldsymbol{x}|oldsymbol{y}) = \mathbb{E}\{s(oldsymbol{x})|oldsymbol{y}\} \ \Rightarrow \ \ \ \ \$ determination of $pig(s(oldsymbol{x})|oldsymbol{y})$
- lacktriangle Distribution of u(S) (see Gaussian marginals theorem)

$$\Rightarrow \quad \boldsymbol{\nu}(S) \sim \mathcal{N}(\boldsymbol{\nu}(\mu_S), \mathbf{G}) \quad \text{with} \quad \mathbf{G} \in \mathbb{R}^{M \times M}$$
 where $[\mathbf{G}]_{m,n} = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \nu_m(\boldsymbol{x}) r_S(\boldsymbol{x}, \boldsymbol{y}) \nu_n(\boldsymbol{y}) \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{y} \qquad \Rightarrow \quad \mathbf{y} = \boldsymbol{\nu}(s) + \mathbf{n} \ \sim \ \mathcal{N}(\boldsymbol{\nu}(\mu_S), \mathbf{G} + \sigma_0^2 \mathbf{I}_M)$

 $\blacksquare \text{ Joint pdf of } \boldsymbol{Z} = (s(\boldsymbol{x}), \mathbf{y}) \ \sim \ \mathcal{N}(\mathbf{m}_{\boldsymbol{Z}}, \mathbf{C}_{\boldsymbol{Z}}) \quad \text{ with } \mathbf{m}_{\boldsymbol{Z}} = \big(\mu_S(\boldsymbol{x}), \boldsymbol{\nu}(\mu_S)\big),$

$$\begin{aligned} \mathbf{C}_{\boldsymbol{Z}} &= \left(\begin{array}{cc} r_S(\boldsymbol{x}, \boldsymbol{x}) & \boldsymbol{\nu}^*(\boldsymbol{x})^T \\ \boldsymbol{\nu}^*(\boldsymbol{x}) & \mathbf{C}_{\boldsymbol{Y}} \end{array} \right) \text{ where } \boldsymbol{\nu}^*(\boldsymbol{x}) = \left(\begin{array}{c} \nu_1^*(\boldsymbol{x}) \\ \vdots \\ \nu_M^*(\boldsymbol{x}) \end{array} \right) \\ \text{with } \nu_m^*(\boldsymbol{x}) &= \mathbb{E} \left\{ S(\boldsymbol{x}) Y_m \right\} = \int_{\mathbb{R}^d} r_S(\boldsymbol{x}, \boldsymbol{y}) \nu_m(\boldsymbol{y}) \mathrm{d}\boldsymbol{y} \end{aligned}$$

■ Bayes rule + algebra $\Rightarrow p\big(s(\boldsymbol{x})|\mathbf{y}\big) = p_{\boldsymbol{Z}}(\mathbf{z})/p_{\boldsymbol{Y}}(\mathbf{y})$ univariate Gaussian with mean $\mathbb{E}\{s(\boldsymbol{x})|\mathbf{y}\} = \mu_S(\boldsymbol{x}) + \boldsymbol{\nu}^*(\boldsymbol{x})^T(\mathbf{G} + \sigma_0^2\mathbf{I})^{-1}\big(\mathbf{y} - \boldsymbol{\nu}(\mu_S)\big)$ and variance $\sigma_{s(\boldsymbol{x})|\mathbf{y}}^2 = r_S(\boldsymbol{x},\boldsymbol{x}) - \boldsymbol{\nu}^*(\boldsymbol{x})^T(\mathbf{G} + \sigma_0^2\mathbf{I})^{-1}\boldsymbol{\nu}^*(\boldsymbol{x})$

35

Equivalence with variational solution

Case of zero-mean signal

$$\mathbb{E}\{s(\boldsymbol{x})|\mathbf{y}\} = \boldsymbol{\nu}^*(\boldsymbol{x})^T(\mathbf{G} + \sigma_0^2 \mathbf{I}_M)^{-1}\mathbf{y}$$

$$\Leftrightarrow \quad s_{\mathrm{MMSE}}(\boldsymbol{x}|\mathbf{y}) = \sum_{m=1}^M a_m \nu_m^*(\boldsymbol{x})$$
with
$$\mathbf{a} = (a_1, \dots, a_M) = (\mathbf{G} + \sigma_0^2 \mathbf{I}_M)^{-1}\mathbf{y}$$

- Formal equivalence with smoothing spline problem
 - \mathcal{H} : RKHS induced by covariance function $r_S: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$
 - ${f R}_S$: covariance operator is the Riesz map ${\cal H}' o {\cal H}$
 - $\lambda = \sigma_0^2$: optimal choice of regularization parameter

$$s_{\text{MMSE}}(\cdot|\mathbf{y}) = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^{M} |y_m - \langle \nu_m, f \rangle|^2 + \lambda ||f||_{\mathcal{H}}^2 \right)$$

Exact discretization: $\nu_m^* = R_S\{\nu_m\}$ and $[\mathbf{G}]_{m,n} = \langle \nu_m, \ \nu_n^* \rangle = \langle \nu_m^*, \nu_n^* \rangle_{\mathcal{H}}$