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Formalism of probability theory
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All possible 
outcomes Sigma algebra

(all measurable sets)

Probability 
measure

Probability space: (⌦, ⌃(⌦), P)

P : ⌃(⌦) ! [0, 1]

“Conceptual” indicator of
outcome of ONE random experiment

What the observer sees:  
the realization

Random variable as a map X : ⌦ ! X

! 7! X(!) 2 X

“Smallest sigma-algebra that contains

all open sets of X "

X = State space (assumed to be a vector space such as R)

Borel(X ): Borel sigma-algebra of X

Induced probability measure

PX(E) = P{! 2 ⌦ : X(!) 2 E} for all E 2 Borel(X )

Review: real-valued random variable
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X = R ! 7! X(!) 2 R

Probability density function: pX : R ! R+

Probability measure: Borel(R) ! [0, 1]

PX(E) = Prob(X(!) 2 E) =

Z

E
pX(x)dx

Characteristic function: R ! C
cP

X

(⇠) = E{ejX⇠} =

Z

R
p

X

(x)ejx⇠dx

-2 -1 0 1 2 3

x

Prob(E) =

Z

E
pX(x)dx

E

p

X

(x) = 1p
2⇡

e�
1
2x

2

Expectation operator (f measurable function R ! R)

E{f(X)} =

Z

R
f(x)pX(x)dx =

Z

R
f(x)PX(dx)

Mean: µX = E{X}
Variance: �

2
X = E{(X � µX)2}

⇠

-2 -1 0 1 2 3 4 5

1

bpX(⇠) = F{pX}(⇠) = e�
1
2 ⇠

2



Review: random vector in 
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X = RN

! 7! X(!) 2 R

RN

pX(x1, x2)

Probability density function pX : RN ! R+

Lebesgue–Stieltjes integral

Expectation operator (f measurable function RN ! RM
)

E{f(X)} =

Z

RN

f(x)pX(x)dx =

Z

RN

f(x)PX(dx)

=

Z

RN

ejh⇠,xiP
X

(dx)

Characteristic function: RN ! C
cP

X

(⇠) = E{ejhX,⇠i} =

Z

RN

p
X

(x)ejh⇠,xidx

Probability measure: Borel(RN
) ! [0, 1]

PX(E) = Prob(X(!) 2 E) =

Z

E
pX(x)dx

X = (X1, . . . , XN )

Mean vector: µX = E{X} 2 RN

Covariance matrix: CX = E{(X � µX)(X � µX)T } 2 RN⇥N

4.1 Generalized stochastic process in 
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S 0(Rd)

X = S 0(Rd)

! 7! g = G(!) 2 S 0(Rd)

Characteristic functional: S(Rd) ! C

cPG(') = E{ejhG,'i} =

Z

S0(Rd)
ejhg,'iPG(dg)

Abstract Lebesgue integral

Probability measure: Borel

�
S 0
(Rd

)

�
! [0, 1]

PG(E) = Prob(G(!) 2 E)

Mean g-function: µG = E{G} 2 S 0(Rd)

Covariance operator RG : S(Rd) ! S 0(Rd)

RG = E{(G� µG)⌦ (G� µG)}

Probability density function pG : X ! R+

infinite
dimensional

???

Abstract expectation operator (f measurable function S 0(Rd) ! S 0(Rd))

E{f(G)} =

Z

S0(Rd)
f(g)PG(dg)



GSP as a random linear functional on
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S(Rd)

Any realization g = G(!) specifies a continuous linear map S(Rd) ! R

' 7! hG(!),'i = X'(!)

Definition

A generalized stochastic process G in S 0(Rd) is a random linear functional

' 7! hG,'i on S(Rd) with the following properties:

• Generation mechanism: for any ' 2 S(Rd), the quantity X' = hG,'i is

an ordinary scalar random variable whose pdf pX' is parametrized by '.

• Linearity: hG, a1'1 + a2'2i = a1hG,'1i + a2hG,'2i in law for any

'1,'2 2 S(Rd) and a1, a2 2 R.

• Continuity: If the sequence ('n) is converging in S(Rd) then limn!1hG,'ni =
hG, limn!1 'ni in law.

Linear process

! 7! GN0(!) =
PN0

n=1 An(!)pn

' 7! GN0(') = h
PN0

n=1 Anpn,'i =
PN0

n=1 Anhpn,'i

where An ⇠ N (0,�2): i.i.d. Gaussian, (p1, . . . , pN ): fixed elements of S 0(Rd).

Examples of GSP
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(Generalized) deterministic process

! 7! G
Const

(!) = p
0

2 S 0(Rd)

' 7! G
Const

(') = hp
0

,'i

) WGauss(!): infinite-dimensional entity (random counterpart of Dirac �)

Gaussian white noise

' 7! WGauss(') = hWGauss,'i ⇠ N (0, k'k2L2(Rd))

) finite-dimensional entity



Properties of GSP: Definitions
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Shift-invariance: G = G(·� x0) (in law)

Scale invariance: G = aHG(·/a) (in law)

Stationary

if X
x0 = hG,'(·+ x0)i identically distributed for any x0 2 Rd

Self-similar with Hurst index H

if Xa = aHhG, |a|d'(a·)i identically distributed for any a 2 R+

Statistical properties

The generalized stochastic process G in S 0(Rd) is said to be:

Gaussian if X = hG,'i is Gaussian distributed for any ' 2 S(Rd)

Special case of standardized white Gaussian noise:

X = N (0,�2
X) with �2

X = k'k2L2(Rd) for any ' 2 S(Rd) (resp., any ' 2 L2(Rd))

Independence

The GSP G1 and G2 in S 0(Rd) are mutually independent

, X1 = hG1,'i and X2 = hG2,'i are mutually independent for any ' 2 S(Rd)

Linear transformation of GSP
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Adjoint pair of continuous linear operators: T : S 0(Rd) ! S 0(Rd), T⇤ : S(Rd) ! S(Rd)

Definition of linear transformation

hT{G},'i M
= hG,T⇤{'}i for any ' 2 S(Rd)

Primary transformations of g = G(!) 2 S 0(Rd)

Translation by x0 2 Rd

: hg(·� x0),'i
M
= hg,'(·+ x0)i

Dilation (or scaling) by a 2 R+
: hg(·/a),'i M

= hg, |a|d'(a·)i

Rotation of coordinate system x 7! Rx with R�1 = RT

:

hg(R·),'i M
= hg,'(R�1·)i

Partial derivative operator @n
of multi-order n = (n1, . . . , nd

):

h@ng,'i M
= hg, (�1)|n|@n'i

where |n| = n1 + · · ·+ n
d

and @n'(x) = @

|n|
'(x1,...,xd)

@x

n1
1 ···@xnd

d



4.2. Mean and covariance forms
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G(') = hG,'i is an ordinary random variable for any ' 2 S(Rd)

with mean E{hG,'i} = E{G(')} =

Z

R
xpG(')(x)dx

Mean as a linear functional

E{hG,'i} : S(Rd) ! R (linear and continuous map)

Examples

Constant process: ' 7! G
Const

(') = hp
0

,'i
) µG

Const

= p
0

, there exists a unique µG 2 S 0(Rd) (the mean of the GSP G) such that

' 7! E{hG,'i} = hE{G},'i = hµG,'i

Gaussian white noise: ' 7! WGauss(') = N (0, k'k2L2
)

) µGGauss = 0 : ' 7! hµGGauss ,'i = 0

Covariance form / operator
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Theorem (Properties of covariance form)

Let G be a GSP in S 0(Rd) with mean E{G} = µG and the second-order property

E{hG,'i2} < 1 for all ' 2 S(Rd). Then, its covariance form CG : S(Rd)⇥ S(Rd) !
R has the following properties:

• Symmetry: CG('1,'2) = CG('2,'1).

• Bilinearity: CG : ('1,'2) 7! CG('1,'2) is linear in each of its arguments.

• Continuity: CG continuously maps S(Rd)⇥ S(Rd) ! R.

• Positive-definiteness: CG('1,'1) � 0.

• Link with covariance operator: Unique RG : S(Rd) ! S 0(Rd) s.t.

CG('1,'2) = hRG{'1},'2i = hRG{'2},'1i.

• Kernel representation: Unique symmetric kernel rG 2 S 0(Rd ⇥ Rd) s.t.

CG('1,'2) = hrG,'1 ⌦ '2i =
Z

Rd

Z

Rd

rG(x,y)'1(x)'2(y)dxdy.

Extraction of second-order statistics with X1 = hG,'1i and X2 = hG,'2i

CG('1,'2)
M
= E{hG� µG,'1ihG� µG,'2i} = Cov(X1X2)



Positive-definite covariance form / kernel / operator
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Covariance operator: RG{'}(x) = hrG(x, ·),'i =
Z

Rd

rG(x,y)'(y)dy

Covariance function: rG(x,y) = CG

�
�(·� x), �(·� y)

�

Special case of a stationary processes

rG(x,y) = rG
�
0, (y � x)

�
= aG(y � x)

aG(⌧ )
M
= E{G(x)G(x+ ⌧ )} (classical autocorrelation function)

CG(',') = hRG{'},'i � 0

Effect of a linear transformation T : S 0(Rd) ! S 0(Rd)

E{hT{G},'i} = hµG,T⇤{'}i = hT{µG},'i , µT{G} = T{µG}

CTG('1,'2) = CG(T⇤'1,T⇤'2) = h'1,TRGT⇤'2i , RT{G} = TRGT⇤

Mean and Covariance of a random vector in
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) E{Y } = hµX ,ui

Positive definiteness: hu,CXui = Var{Y } � 0

) Cov{Xm, Xn} = [CX ]m,n

Covariance matrix: CX = E{(X � µX)(X � µX)T} 2 RN⇥N

Mean vector: µX = E{X} 2 RN

X = (X1, . . . , XN )

Effect of a linear transformation T : RN ! RM

Y = TX 2 RM

µY = E{Y } = TµX 2 RM

CY = exp{(Y � µY )(Y � µY )

T } = TCY TT 2 RM⇥N

RN

Covariance operator RN ! RN
: u 7! v = CXu



Mean-square continuity and RKHS
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Classical stochastic process on Rd
= indexed collection of random variables {G(x) : x 2 Rd}

GSP with extended space of test functions that includes �(·� x0) for any x0 2 Rd

G(x)
M
= hG, �(·� x)i

E{G(x)} = µG(x) and rG(x,y) = E{
�
G(x)� µG(x)

��
G(y)� µG(y)

�
}

lim
x!x0

E{
⇥
G(x)�G(x0)

⇤2} = lim
x!x0

(rG(x,x) + rG(x0,x0)� 2rG(x,x0))

Definition

A real-valued stochastic process {G(x) : x 2 Rd} is said to be mean-square continuous

at x0 2 Rd
if E{[G(x0)]2} < 1 and

lim
x!x0 E{

⇥
G(x)�G(x0)

⇤2} = 0.

Theorem (Mean-square continuity)

A second-order stochastic process G on Rd
is mean-square continuous over Rd

if and

only if its mean and covariance functions, µG and rG, are continuous over Rd
and

Rd ⇥ Rd
, respectively. This also implies that rG is a valid reproducing kernel.

4.3 Characteristic functional
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) p̂Y (⇠) = E{ej⇠Y } = exp

�
� 1

2⇠
2�2

Y

�
) cPGN0

(') = exp

 
� 1

2

N0X

n=1

�2
n|hpn,'i|2

!

Examples

cPG
Const

(') = E{ejhGConst

,'i} = ejhp0

,'i

Finite-dimensional Gaussian process GN0 =
PN0

n=1 Anpn with An ⇠ N (0,�2
n)

) Y = hGN0 ,'i ⇠ N (0,�2
Y ) with �2

Y =
N0X

n=1

�2
n|hpn,'i|2

Definition

The characteristic functional

cPG : S(Rd) ! C of the generalized stochastic

process G in S 0(Rd) is given by

cPG(')
M
= E{ejhG,'i} =

Z

S0(Rd)
ejhg,'iPG(dg)

where the right-hand side is an abstract Lebesgue integral over the space S 0(Rd).



Continuity and positive definiteness
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Definition

A functional F : X ! C is said to be continuous (with respect to the topology of

the function space X ) if, for any convergent sequence ('n) in X with limit ' 2 X , the

sequence F ('n) converges to F ('); that is, limn F ('n) = F (limn 'n).

Definition

A complex-valued functional F : X ! C defined over the function space X is said to be

positive-definite if

NX

m=1

NX

n=1

zmF ('m � 'n)zn � 0 (1)

for every possible choice of '1, . . . ,'N 2 X , z1, . . . , zN 2 C, and N 2 N+
. Like-

wise, it is said to be conditionally positive-definite if (1) holds subject to the constraint

PN
n=1 zn = 0.

Positive-definite functionals: fundamental examples
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H: Hilbert space with inner product h·, ·iH.

� 1
2

NX

m=1

NX

n=1

zmznk'm � 'nk2H =

= � 1
2

NX

n=1

zn

| {z }
=0

NX

m=1

zmk'mk2H � 1
2

NX

m=1

zm

| {z }
=0

NX

n=1

znk'nk2H +
NX

m=1

NX

m=1

zmznh'm,'niH

=
NX

m=1

NX

n=1

zmznh'm,'niH =
��

NX

n=1

zn'n

��2
H � 0,

Schoenberg’s correspondence theorem

G(') conditionally positive-definite over X

, F (') = e⌧G(')
positive-definite over X for any ⌧ 2 R+

F (') = e

� 1
2k'k2

H
is positive-definite over H

G(') = logF (') = � 1
2k'k2H is conditionally positive-definite over H



Characteristic functional: key properties
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Theorem

The characteristic functional cPG : S(Rd) ! C of a generalized stochastic process G in S 0(Rd) enjoys

the following properties:

1. cPG is continuous, bounded (i.e. | cPG(')|  1), Hermitian-symmetric (i.e., cPG(�') = cPG('))

and normalized such that cPG(0) = 1.

2. cPG is positive-definite.

3. Connection with joint pdf: Let '1, . . . ,'N 2 S(Rd) be any fixed collection of test functions. Then,

the joint pdf of the random vector G = (hG,'1i, . . . , hG,'N i) is given by the following finite-

dimensional inverse Fourier transform

p
G

(x) =

Z

RN

cPG(⇠1'1 + · · ·+ ⇠N'N )e�jh⇠,xi d⇠

(2⇡)N
.

with Fourier-domain variable ⇠ = (⇠1, · · · , ⇠N ).

4. Linear transformation: Let T be a continuous linear operator S 0(Rd) ! S 0(Rd) and µ0 2 S 0(Rd)

some constant generalized function. Then, the characteristic functional of Q = T{G}+ µ0 is

cPQ(') = cPT{G}+µ0
(') = cPG(T

⇤')ejhµ0,'i

where T⇤ : S(Rd) ! S(Rd) is the (continuous) adjoint of T.

5. Sum of independent processes: Let G1 and G2 be two independent generalized stochastic pro-

cesses with characteristic functionals cPG1 and cPG2 , respectively. Then, the characteristic func-

tional of G = G1 +G2 is
cPG1+G2(') = cPG1(') cPG2(').

Characteristic function: key properties
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Random vector in RN
: X = (X1, . . . , XN ) with pdf pX : RN ! R+

Theorem

The characteristic function p̂
X

(⇠) = E{ejh⇠,Xi} =
R
RN p

X

(x)ejh⇠,xidx enjoys the following properties:

1. p̂
X

: RN ! C is continuous, bounded (i.e., |p̂
X

(⇠)|  1), Hermitian-symmetric, and normalized

such that p̂
X

(0) = 1.

2. p̂
X

is positive-definite.

3. Invertibility: p
X

(x) = F⇤�1{p̂
X

}(x) =
Z

RN

p̂
X

(⇠)e�jh⇠,xi d⇠

(2⇡)N
.

4. Linear transformation: Let H 2 RM⇥N be an arbitrary transformation matrix and b 2 RM some

constant offset vector. Then, the characteristic function of Y = HX + b 2 RM is

p̂
Y

(⇠) = p̂HX+b(⇠) = p̂
X

(HT
⇠)ejb

T
⇠

with Fourier-domain variable ⇠ 2 RM and HT
⇠ 2 RN .

5. Sum of independent random variables: Let X1 2 RN and X2 2 RN be two independent random

vectors with cfs p̂
X1 and p̂

X1 , respectively. Then, the characteristic function of Y = X1 +X2 is

p̂
X1+X2(⇠) = p̂

X1(⇠)p̂X2(⇠).

6. Preservation of separability (or joint cf of a collection of independent random variables). Let X =

(X1,X2) with p
X

(x) = p(X1,X2)(x1,x2) = p
X1(x1)pX2(x2). Then,

p̂(X1,X2)(⇠) = p̂
X1(⇠1)p̂X2(⇠2) with ⇠ = (⇠1, ⇠2).



Functional characterization theorems
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Theorem (Extension of the domain)

Let

cPG be a valid characteristic functional whose domain of continuity is extendable to some topo-

logical vector space X with the property that S(Rd) ✓ X ✓ S 0(Rd). Then, the extended func-

tional

cPG : X ! C is continuous, positive-definite and normalized, which implies that the

random variable G(�) = hG,�i is well-defined for any � 2 X .

Theorem (Minlos-Bochner)

A functional

cPG : S(Rd) ! C is the characteristic functional of a generalized stochastic G in

S 0(Rd) if and only if it is positive-definite, continuous and normalized with

cPG(0) = 1. This is

equivalent to the existence of a unique probability measure PG on S 0(Rd), such that

cPG(') =

Z

S0(Rd)
e�jhg,'iPG(dg) = E{e�jhG,'i}.

Transfer of positive-definiteness: denseness of S(Rd) in X + continuity of cPG

Let X = hG,�0i with �0 2 X fixed. Then, the map R ! C

⇠ 7! cPG(⇠�0) = E{ej⇠hG,�0i} = E{ej⇠X} = p̂X(⇠)

is continuous, positive-definite and normalized. Hence, X is a bona-fide random variable (by Bochner).

Distributional extension of Bochner’s theorem
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Key idea (Generalized Parseval’s relation)

hĝ, ('_ ⇤ ')i = hĝ,�i = hg, �̂i = hg, |'̂|2i � 0 ) g � 0

The (complex-valued) generalized function g : S(Rd) ! C is said to be positive-definite if

Z

Rd

Z

Rd

'(x)g(x� y)'(y)dxdy = hg ⇤ ','i = hg, ('_ ⇤ ')i � 0

where '_
denotes the reversed version '; i.e., '_(x)

M
= '(�x) for any x 2 Rd

.

Theorem (Bochner-Schwartz)

A generalized function ĝ 2 S 0(Rd) is positive-definite if and only if it is the generalized

Fourier transform of a positive distribution g � 0; that is,

hĝ,'i = hg, '̂i =
Z

Rd

'̂(x)g(x)dx

where '̂(!) =
R
Rd '(x)e�jh!,xidx is the Fourier transform of the test function ' 2 S(Rd).

Moreover, if ĝ is continuous at the origin with ĝ(0) = 1, then it is the (ordinary) Fourier

transform of a Borel measure g � 0 with

R
Rd g(x)dx = 1.



4.4 Characterization of Gaussian processes
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Special case: Gaussian white noise

CWGauss('1,'2) = h'1,'2iL2 or, equivalently, RWGauss = Identity

cPWGauss(') = exp

⇣
� 1

2k'k
2
L2(Rd)

⌘
, WGauss ⇠ N (0, Identity) in S 0

(Rd
)

Note: Domain extendable from S(Rd) to L2(Rd)

Theorem (Generalized Gaussian processes)

A generalized stochastic process G in S 0
(Rd

) is Gaussian if and only if

cPG(') = E{ejhG,'i} =

exp

�
� 1

2CG(',') + jhµG,'i
�

where CG : S(Rd
)⇥S(Rd

) ! R is a continuous positive-

definite bilinear form and µG 2 S 0
(Rd

). This generalized Gaussian process is uniquely

characterized by its mean

E{G} = µG

and its covariance operator RG : S(Rd
) ! S 0

(Rd
) defined as

' 7! hRG{'}, ·i = CG(', ·),

which is indicated as G ⇠ N (µG,RG) in S 0
(Rd

), whereas the covariance form of the

process is CG, as the notation suggests.

Multivariate Gaussian distribution
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pGauss(X|µ,C) =

1p
(2⇡)N |det(C)|

exp

✓
�1

2

(X � µ)TC�1
(X � µ)

◆

Definition

The characteristic function of a multivariate Gaussian random vector of dimension N with mean

µ 2 RN
and symmetric positive-definite covariance matrix C 2 RN⇥N

is

p̂Gauss(⇠|µ,C) = exp

⇣
� 1

2⇠
TC⇠ + jµT ⇠

⌘
.

Notation

X ⇠ N (µ,C): The random vector X = (X1, . . . , XN ) is multivariate Gaussian

with mean µ and covariance C

Linear form RN ! R: ⇠ 7! hµ, ⇠i
Bilinear form RN ⇥ RN ! R: (⇠1, ⇠2) 7! h⇠1,C⇠2i

Proposition (Invariance by affine transformation)

Consider some fixed matrix H 2 RN2⇥N1
, an offset vector b 2 RN1

and some N1-dimensional

Gaussian random vector X1 ⇠ N (µ1,C1). Then, X2 = HX1 + b ⇠ N (µ2,C2) with

µ2 = Hµ1 + b and C2 = HC1H
T .



Proof of Gaussian characterization theorem
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Continuity of CG : S(Rd)⇥ S(Rd) ! R is a necessary condition (see covariance theorem)

Existence and unicity of generalized stochastic process G in S 0
(Rd

)

' 7! exp

�
� 1

2 hRG{'},'i+ jhµG,'i
�

is positive-definite, continuous, and normalized

(due to the positive-definiteness of RG and Schoenberg’s correspondence)

) G is a GSP in S 0
(Rd

) (by Bochner-Minlos’ theorem)

Determination of characteristic function of X = hG,'i:

E{ej!X} = E{ejhG,!'i} =

cPG(!')

= exp

�
� 1

2!
2CG(',') + j!hµG,'i

�
= e

� 1
2!

2�2

e

j!µ

) Gaussian cf with mean µ = hµG,'i and variance �2
= CG(',') = Var{X}

Identification of covariance form (using bilinearity) with X1 = hG,'1i and X2 = hG,'2i

Cov(X1, X2) =
1

4

⇣ Var(X1+X2)z }| {
CG('1 + '2,'1 + '2)+

Var(X1�X2)z }| {
CG('1 � '2,'1 � '2)

⌘
= CG('1,'2)

Invariance to coordinate transformations
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Continuous linear functional on S(Rd): g 2 S 0(Rd)

Continuous linear operator T : S(Rd) ! S 0(Rd)

Definition

g and T respectively are said to be

shift-invariant if, for any ' 2 S(Rd) and x0 2 Rd
,

hg(·� x0),'i
M
= hg,'(·+ x0)i = hg,'i

T{'(·� x0)} = T{'}(·� x0)

scale-invariant of order � if, for any a 2 R+
,

hg(a·),'i M
= hg, |a|�d'(·/a)i = a�hg,'i

T{'(a·)} = a�T{'}(a·)

rotation-invariant if, for any rotation matrix R : Rd ! Rd
,

hg(R·),'i M
= hg,'(R�1·)i = hg,'i

T{'(R·)} = T{'}(R·).



Categorization of Gaussian processes
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Examples

Gaussian white noise WGauss ⇠ N (0, Identity) in S 0(Rd): stationary, isotropic, self-similar

Brownian motion GWiener ⇠ N (0,RD) in S 0(R): self-similar, mean-square continuous

Covariance function: rWiener(x, y) = hD(x, y) =
1
2

�
|x|+ |y|� |x� y|

�

Proposition (Types of Gaussian processes)

Let G ⇠ N (µG,RG) be a generalized Gaussian stochastic process in S 0
(Rd

) with mean µG 2
S 0
(Rd

) and covariance operator RG : S(Rd
) ! S 0

(Rd
). Then, depending on the properties of

µG and RG, the process G is:

stationary iff. both µG and RG are shift-invariant; that is, when µG = Const and RG is a

(positive-definite) convolution operator.

self-similar with Hurst exponent H iff. µG and RG are scale-invariant of order H and 2H ;

isotropic iff. both µG and RG are rotation-invariant;

mean-square continuous on Rd iff. there exists some ↵ 2 R such that µG = E{G} 2
Cb,↵(Rd

) and rG 2 Cb,↵(Rd⇥Rd
) where rG is the kernel of the covariance operator RG;

i.e, the mean and the covariance functions are both continuous and of slow growth.

Classical Gaussian processes and RKHS
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Preliminary observations

Domain of F (') = e�
1
2k'k2

H0
can be extended from S(Rd) to H0

To recover a classical process on Rd
, H0

should include �(·� x0) for any x0 2 Rd

Corollary (Equivalence between Gaussian processes and RKHS)

A GSP G in S 0
(Rd

) is equivalent to a “classical” Gaussian process on Rd
if and only if

its characteristic functional is of the form

cPG(') = exp

�� 1
2k'k2H0 + jhµG,'i

�

with

k'k2H0 =

Z

Rd

Z

Rd

'(x)rG(x,y)'(y)dxdy = h',RG{'}i

and µG 2 H, where rG : Rd ⇥ Rd ! Rd is the reproducing kernel of some RKHS H ✓
S 0
(Rd

). This means that G ⇠ N (µG,RG) and that its sample values, {G(x) : x 2 Rd},

are well-defined Gaussian random variables with mean E{G(x)} = µG(x) and covariance

function

E
��

G(x)� µG(x)
��
G(y)� µG(y)

� 
= rG(x,y) = RG{�(·� y)}(x).

Finally, G is mean-square continuous if and only if rG 2 Cb,↵(Rd ⇥ Rd
) for some ↵ 2 R,

which implies that H ✓ Cb,↵(Rd
).



Gaussian marginals
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Proposition

Let G ⇠ N (µG,RG) with RG : ' 7! R
Rd rG(·,y)'(y)dy be a Gaussian process on Rd whose covariance

function rG : Rd⇥Rd ! R is the reproducing kernel of a RKHS H ✓ S 0(Rd) and such that µG 2 H. Then,

Y = (hG,'1i, . . . , hG,'N i) is a well-defined multivariate Gaussian vector if and only if '1, . . . ,'N 2 H0.
Specifically, Y ⇠ N (µY ,CY ) with mean vector

µY = (hµG,'1i, . . . , hµG,'N i) 2 RN

and covariance matrix CY 2 RN⇥N such that

[CY ]m,n = hRG{'m},'ni = h'm,'niH0

=

Z

RN

Z

RN

'm(x)rG(x,y)'n(y)dxdy.

4.5 Gaussian solutions of SDE
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Adjoint pair of continuous linear operators: T : S 0(Rd) ! L2(Rd) and T⇤ : S(Rd) ! L2(Rd)

S ⇠ N (µG,TT⇤)T
w s

white noise

Generation of Gaussian process with factorizable covariance operator: RS = TT⇤

Innovation model = stochastic differential equation

Ls = w ) s = L�1w

Coercivity hypothesis: Continuity of L�1⇤ = T⇤ : S(Rd) ! L2(Rd)

Linear transformation of a white noise

! 7! w = WGauss(!) 7! s = S(!) = T{w}+ µS



Operators with non-trivial null space
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Generalization:

Ls = w s.t. �(s) = (a1, . . . , aN0)

an: realizations of independent Gaussian variables An with zero mean and variance �2
n

) s = L�1
� w +

N0X

n=1

anpn

Solution of linear stochastic differential equation

Imposing N0 boundary conditions

Ls = w s.t. �(s) = 0

Biorthogonal boundary functionals � : H0
L(Rd) ! RN0

s.t. �(pn) = en

L is spline-admissible with finite-dimensional null space NL = span{pn}N0
n=1

Explicit solutions of linear SDE
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Covariance function: rS(x,y) = E{S(x)S(y)} = a�(x,y) +
N0X

n=1

�2
npn(x)pn(y)

Characteristic form:

cPS(') = exp

 
� 1

2kL
�1⇤
� 'k2L2

� 1
2

N0X

n=1

�2
n|hpn,'i|2

!

) same form as in Section 2 on RKHS !!!!

Covariance operator: RS = A� +
N0X

n=1

�2
nPpn with Pu : ' 7! uhu,'i

w: realization of white Gaussian noise

an: realizations of independent Gaussian random variables An ⇠ N (0,�2
n)

Ls = w s.t. �(s) = (a1, . . . , aN0) ) s = L�1
� w +

N0X

n=1

anpn

Characterization of underlying stochastic process

S = L�1
� WGauss +

N0X

n=1

Anpn ⇠ N (0,RS)



4.6 MMSE solution of linear inverse problems
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Linear measurement model: s 7! y = ⌫(s) + n 2 RM

Hypotheses

the unknown signal s = S(!) 2 S 0(Rd) is a realization of a stochastic process S;

rS : Rd ⇥ Rd ! R is the reproducing kernel of a RKHS H ✓ Cb,↵(Rd);

S is a Gaussian process on Rd with mean E{S(x)} = µS(x) 2 H and covariance function

E
��

S(x)� µS(x)
��
S(y)� µS(y)

� 
= rS(x,y);

⌫ : s 7! ⌫(s) = (h⌫1, si, . . . , h⌫M , si) with ⌫m 2 H0 is a linear operator that extracts M

measurements from the signal s;

n 2 RM is an independent additive white Gaussian noise (AWGN) component whose entries

are i.i.d. with zero-mean and variance �2
0 .

MMSE estimator at location x
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Generalized Gauss-Markov theorem

The minimum mean-square error (MMSE) estimation of s(x) given the noisy linear ob-

servation y = ⌫(s) + n of s is

sMMSE(x|y) = E{s(x)|y} = µS(x) + ⌫

⇤(x)T (G+ �2
0IM )�1

�

y � ⌫(µS)
�

,

while the corresponding estimation error is

E
n

�

sMMSE(x|y)� s(x)
�2
o

= rS(x,x)� ⌫

⇤(x)T (G+ �2
0IM )�1

⌫

⇤(x).

Here, ⌫⇤ = (⌫⇤1 , . . . , ⌫
⇤
M ) is the Riesz conjugate of the measurement operator ⌫, while

G 2 RM⇥M is the corresponding Gram/covariance matrix.

⌫⇤m(x) =

Z

Rd

rS(x,y)⌫m(y)dy

[G]m,n =

Z

Rd

Z

Rd

⌫m(x)rS(x,y)⌫n(y)dxdy



Proof of generalized Gauss-Markov theorem
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Linear measurement model: s 7! y = ⌫(s) + n 2 RM

Distribution of ⌫(S) (see Gaussian marginals theorem)

) ⌫(S) ⇠ N (⌫(µS),G) with G 2 RM⇥M

where [G]m,n =

Z

Rd

Z

Rd

⌫m(x)rS(x,y)⌫n(y)dxdy

Bayes rule + algebra ) p
�
s(x)|y

�
= p

Z

(z)/p
Y

(y) univariate Gaussian

with mean E{s(x)|y} = µS(x) + ⌫

⇤(x)T (G+ �2
0I)

�1
�
y � ⌫(µS)

�

and variance �2
s(x)|y = rS(x,x)� ⌫

⇤(x)T (G+ �2
0I)

�1
⌫

⇤(x)

) y = ⌫(s) + n ⇠ N (⌫(µS),G+ �2
0IM )

MMSE solution: sMMSE(x|y) = E{s(x)|y} ) determination of p
�
s(x)|y

�

Joint pdf of Z = (s(x),y) ⇠ N (mZ ,CZ) with mZ =
�
µS(x),⌫(µS)

�
,

CZ =

 
rS(x,x) ⌫

⇤(x)T

⌫

⇤(x) CY

!
where ⌫

⇤(x) =

0

BB@

⌫⇤1 (x)
.

.

.

⌫⇤M (x)

1

CCA

with ⌫⇤m(x) = E
�
S(x)Ym

 
=

Z

Rd

rS(x,y)⌫m(y)dy

Equivalence with variational solution

36

Case of zero-mean signal

E{s(x)|y} = ⌫

⇤(x)T (G+ �2
0IM )�1y

Formal equivalence with smoothing spline problem

H: RKHS induced by covariance function rS : Rd ⇥ Rd ! R

RS : covariance operator is the Riesz map H0 ! H
� = �2

0 : optimal choice of regularization parameter

sMMSE(·|y) = argmin
f2H

 
MX

m=1

��ym � h⌫m, fi��2 + �kfk2H
!

Exact discretization: ⌫⇤m = RS{⌫m} and [G]m,n = h⌫m, ⌫⇤ni = h⌫⇤m, ⌫⇤niH

, sMMSE(x|y) =
MX

m=1

am⌫⇤m(x)

with a = (a1, . . . , aM ) = (G+ �2
0IM )�1y


